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ALBA Overview 



ALBA is a 3rd generation synchrotron light source, located at 20 km 

from Barcelona, Spain, in operation with users since May 2012 

ALBA Overview 
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Accelerators Main Parameters 

Energy    3GeV 

Circumference  268m 

Beam Current   400mA 

Emittance    4nm.rad 

 

Lifetime    ≈10h 

RF Freq    500MHz 

Beamlines    up to 34 
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Storage Ring RF Plants 

6 RF Plants of 160kW at 500 MHz 

2 IOT Transmitters per RF cavity. Power combined in CaCo 

Dampy Cavity 

Normal Conducting 

Single cell, HOM damped 

3.3 MΩ 

Digital LLRF System based on IQ mod/demod 

RF Parameters 

U0 1.3MeV/turn 

Vtotal 3.6 MV 

q ≈ 2.5 

fs ≈  9kHz 

PRF 960kW 
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ALBA LLRF Conceptual Design 



ALBA LLRF 

Main Characteristics 

  Based on digital technology using a 

commercial cPCI board with FPGA 

  Signal processing based on IQ 

demodulation technique 

  Main loops: Amplitude, phase and tuning  

Loops Resolution and bandwidth (adjustable parameters) 

Resolution Bandwidth Dynamic Range 

Amplitude Loop < 0.1% rms [0.1, 50] kHz 30dB 

Phase Loop < 0.1º rms [0.1, 50] kHz 360º 

Tuning < ± 0.5º -- < ± 75º 

Digital board: VHS-ADC from Lyrtech 
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LLRF Conceptual Design 

Conceptual Design and Prototype 

Analog Front Ends for Downconversion (RF to IF) and Upconversion (DC to RF) 

Digital Commercial Board: cPCI with 16 ADCs, 8 DACs and Virtex-4 FPGA 

Timing systems: 520MHz (500 + 20 MHz) for downconversion synchronized with 

digital 80MHz clock for digital acquisition 
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Extra Utilities of ALBA LLRF 
 



 Square modulation of RF Drives at 10Hz 

 Amplitude and duty cycle of RF Drive automatically adjusted by LLRF 

depending on vacuum pressure levels 

 Vacuum < Limit Down  Voltage Amplitude Increases/Decreases 

 Vacuum > Limit Up  Voltage Amplitude remains constant until vacuum is below limit down 

Voltage Increase rate set to 0.03mV/s Voltage Decrease rate set to 1mV/s 

8kW

1kW

600W

P
o
w

e
r 

(k
W

)

Power Down

 

 

0 50 100 150
0

2

4

6
x 10

-7

V
a
c
u
u
m

 (
m

b
a
r)

Vacuum

Cavity Reference

Cavity Voltage
0

2

5

x 10
-7 Power Up

 

 

V
a
c
 (

m
b
a
r)

0 50 100 150 200 250 300 350

45

50

55

60

65

P
o
w

e
r 

(a
.u

.)

Cavity Reference

Cavity Voltage

Vacuum

Vac Limit Up

Vac Limit Down

Automatic Conditioning 
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This system allowed to condition the last SR cavity in less than a week 
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RF Autorecovery with beam 

 Why we need Autorecovery with beam? 

- One cavity -out of six- trips 

- Beam is not lost 

- One wants to recover the tripped cavity with heavy beam loading  

New Automatic Start up – to take into account beam loading: 
 

 -  When RF trip   

  - Open loops (I&Q) 

  - Disable tuning  

  - Detune cavity (parking) by moving the plunger 30,000 steps up 

 - When RF ON: 

  - IOT power high enough to induce more voltage in the cavity than the 

beam loading after unparking 

  - Amplitude and phase loops open because cavity is completely detuned 

   - Phase and amplitude of LLRF adjusted to have very similar conditions in 

open loop and close loop 

  - Plunger moved back 30,000 steps to tune cavity (unparking) 

  - Tuning enabled 

   - Amplitude and phase loops closed 

  - Smooth power increase 

Digital LLRF: ALBA and Max-IV Cases – ALERT Workshop – May 2014 11/22 



0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
-3

100

110

120

130

140

150

Beam Phase

t(s)

(º
)

 

 

Beam Phase (º)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
-3

0

2

4

6

8

10

12

Cav Dis - RvCav - Beam Power

t(s)

k
W

 

 

Cav Dis

BeamPower

RvCav

Behavior of one cavity and a trip in another cavity at 61mA and no beam dump (61mA) 

Post Mortem Analysis Example: Transient after one cavity failure 
and beam survival 

Power to beam increases 

Beam phase gets reduced 

Frequency oscillations ~ 6kHz (synchrotron freq) 

Stabilization time ~ 3ms (longitudinal damping time)  

Fast Data Logger 
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Future upgrades of ALBA LLRF 
 



Feedforward Loop for RF Trip transient 

Feedforward loop to compensate transient when RF cavity trips 

When cavity trips 

- Cavity Voltage oscillates with frequency 

equal to synchrotron tune 

- Transient time equal to damping time 

of machine 

Compensation 

- Amplitude modulation triggered when 

one cavity trips 

- Frequency, amplitude and phase of 

modulation are adjustable parameters 
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 First tests with beam 

- First ripple of transient reduced, but following increased 

- Next step: to modulate phase of the RF Drive instead of Amplitude 
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FF Loop for beam loading compensation 

Digital LLRF: ALBA and Max-IV Cases – ALERT Workshop – May 2014 

 In Normal Operation: Effect of beam loading negligible  
- Revolution frequency ~ 1MHz  

- 90% Filling Pattern 

- 10 trains: 10 x (32 bunches + 12 empty buckets) 

 Filling Pattern modified to 1/3 to measure beam loading 
 

- Beam Phase modified by 5º due to beam loadign effect 

- Future upgrade: Phase modulation (feed-forward loop) to compensate this 

effect 
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Max-IV Overview 



Max-IV will be a 3rd generation synchrotron light source, located in 

Lund, Sweden. Inauguration foreseen for June 2016 

ALBA Overview 
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Accelerators Main Parameters 

Full Injector Linac + 2 SR (1.5GeV and 3GeV)  Option for FEL upgrade 

Circumference  528m 

Beam Current   500mA 

Emittance     < 0.3 nm.rad 

RF Freq    100MHz 
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Max-IV LLRF 



Max-IV LLRF Design based on 

ALBA LLRF 
Similarities: 

 Based on digital Commercial Boards with FPGA, ADCs & DACs 

 Based on IQ modulation/demodulation technique 

 Main Loops: Amplitude, Phase and Tuning of the Cavity  

Main differences: 
 100MHz RF Signals sent directly to ADCs – No Downconversion 

 Two Cavities controlled by one LLRF system 
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Max-IV Extra Utilities 

Fast Interlock Utility 
 When fast interlock detected, RF Drive cut in less than 10us 

 Fast interlocks are: 

Reverse power of cavity 

Arcs 

 Vacuum peak 

3rd Harmonic Cavity Tuning – 300MHz 

Possibility to control Cavity Voltage or Forward Power of Tetrode 

Automatic Startup 

Automatic Conditioning 

Fast Data Logger for post-mortem analysis 
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Max-IV Status and future upgrades 

Status: 
  Prototype tested in Max-II with 2 

cavities 

  Prototype being used for conditioning of 

cavities of Max-IV Rings 

  97% of the FPGA resources already 

used 

Future Upgrades: Perseus 

  New hardware platforms available for 

same price and more powerful 

  Perseus System: uTCA carrier with 

FPGA Virtex-6 + FMC modules 

(daughter boards) with fast ADCs and 

DACs 

 Firmware already migrated to new 

FPGA board. Only 12% of resources 

were used 

 Tests with high power to be done in 

Summer 2014 
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Summary and Conclusions 

ALBA LLRF system: 

 In operation for several years and meets requirements 

 Constant upgrades to improve reliability of RF systems: Automatic 

recovery + feed-forward loops 

 

Max-IV LLRF System 

 Main functionality of system already tested 

 Working on hardware upgrade before starting series production 

 

Main advantages of Digital Low Level RF Systems: 
 High flexibility 

 Upgrades based just on firmware modifications (low cost) 

 Firmware can be easily migrated to different hardware platforms 
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Thanks for your attention 
Questions? 


