

Ultra-short electron bunch instrumentation

Current Status & Future Directions

Allan Gillespie

MAPS Group Carnegie Laboratory of Physics University of Dundee

Workshop on Advanced Low Emittance Rings Technology, Valencia, May 2014

Collaborators in this research:

- D. A. Walsh*, A. Abdolvand, S. A. Zolotovskaya, M. A. Tyrk, W. A. Gillespie (MAPS Group, University of Dundee)
- ✤ S. P. Jamison, R. Pan[†], E. Snedden

(* Accelerator Science and Technology Centre, (ASTeC), STFC Daresbury Laboratory)

T. Lefevre († Beam Instrumentation Group, CLIC Project, CERN)

Femtosecond resolution bunch profile diagnostics

(selective discussion due to time constraints – and predominantly for electrons)

Menu:

- The need for longitudinal (temporal) bunch diagnostics
- Two distinct classes of temporal diagnostics: direct particle & radiative techniques
- Examples: Transverse deflecting cavities RF zero crossing techniques Spectral domain techniques Electro-optic techniques

The need for femtosecond longitudinal diagnostics

1. Advanced Light Sources: 4th - 5th generation

Free-Electron Lasers kA peak currents required for collective gain

 τ = 200fs FWHM, 200pC (<2008, standard) \Rightarrow 10fs FWHM, 10pC (>2008, increasing interest)

Low-emittance storage rings $\tau = 10-200 \text{ ps rms}, \epsilon_H = 150-300 \text{ pm.rad} (MAX-IV, ESRF II)$

2. Particle Physics: Linear Colliders (ILC, CLIC) e⁺-e⁻ and others short bunches, high charge, high quality - for *luminosity*

• ~300fs rms, ~1nC stable, known (smooth?) longitudinal profiles

3. LPWAs: Laser-plasma accelerators produce ultra-short electron bunches!

• 1-5 fs FWHM (and perhaps even shorter in future), ~ 20pC + future FELs

Diagnostics needed for...

Verification of electron beam optics

- Machine tune-up & optimisation
- Machine longitudinal feedback (non-invasive)

Significant influence on bunch profile from

wakefields, space charge, CSR, collective instabilities... machine stability & drift ⇒ *must have a single-shot diagnostic*

Two distinct classes of diagnostics

Grouped by similar physics and capabilities / limitations

Direct Particle Techniques

 $\rho(t) \rightarrow \rho(x)$ longitudinal \rightarrow transverse imaging

Transverse Deflecting Cavities

 $\rho(t) \rightarrow \rho(x') \rightarrow \rho(x)$

• RF zero-phasing

 $\rho(t) \rightarrow \rho(\gamma) \rightarrow \rho(x)$

"Radiative" Techniques

 $\rho(t) \rightarrow E(t)$ propagating & non-propagating

Spectral domain:

- CTR, CDR, CSR (spectral characterisation)
- Smith-Purcell
- Electro-Optic

Time domain:

- Electro-Optic
- Optical Replica/Transposition
- CTR, CDR (autocorrelation)

Transverse Deflecting Cavities (TDC)

cavity: transverse kick

$$\Delta y'_{\rm cav}(z) = \frac{eV}{pc} \sin(\frac{2\pi z}{\lambda_{\rm cav}} + \phi)$$

Time resolution scaling

 $\alpha = \left[\begin{array}{c} \text{deflection gradient} \\ & \bar{\gamma^{1/2}} \end{array} \right]$

Diagnostic capabilities linked to beam optics

Disadvantage - destructive to beam

beam optics : transverse streak

$$\Delta y_{\rm screen}(z) = \left\{ \sqrt{\beta_{\rm c} \beta_{\rm s}} \sin(\Delta \psi) \right\} \, \Delta y'_{\rm cav}(z)$$

FLASH : 27 fs resolution

Rohrs et al. Phys Rev ST (2009)

LCLS XTCAV X-band transverse deflecting cavity

(Y. Ding et al, FEL 2013, NYC)

-20

Bunch head on the left

(~1mJ pulse energy)

z-dependent accel/deceleration

beam optics: energy dispersion

- Introduce energy chirp to beam via "linear" near-zero crossover of RF
- Measure energy spread with downstream spectrometer \Rightarrow infer initial

bunch profile

time resolution dependent on:

- gradient of energy gain
- dispersion of spectrometer
- initial energy spread

initial γ -z correlation ?

Disadvantage - destructive to beam

RF zero-phasing examples

DUV-FEL: at 75 MeV

time resolution of ~50 fs

Graves et al. PAC 2001

SLAC LCLS: at 4.3 &14 GeV

- 550m of linac at RF zero crossing!
- <u>6m dispersion</u> on A-line spectrometer

~ 3 fs rms bunch length at 14 GeV ~ 1 fs rms bunch length at 4.3 GeV

Huang et al. PAC 2011, FEL2013

Cause bunch to radiate coherently

Techniques & limitations:

CSR/CTR :propagation effects; detector response; missing phaseCDR :as for CSR/CTR; plus emission responseOptical Replica:emission response (? radiating undulator)Electro-Optic:detector response

Common Problem - Field at Source

Field radiated or probed is related to Coulomb field near electron bunch

Time response & spectrum of field dependent on spatial position, R: $\delta t \sim 2r / c\gamma$

 \Rightarrow ultrafast time resolution needs close proximity to bunch

(N.B. equally true of CTR, CDR, Smith-Purcell, Electro-Optic, etc.)

Spectral domain radiative techniques

Bunch form factor _

Coherent transition radiation (CTR) Coherent diffraction radiation (CDR) Coherent synchrotron radiation (CSR) Smith-Purcell radiation (SP)

far-IR / mid-IR spectrum

- More than an octave spanning in frequency
- Short wavelengths describe the fast structure
- Long wavelengths <u>required</u> for bunch reconstruction

For: Simplicity (not always!) Empirical machine information, real time Information on fast and slow structure

Against:

No explicit time profile (but reconstruction *may* be possible) Significant calibration issues

Good example: single shot CTR spectrometer at FLASH

cascaded dispersive grating elements, and pyroelectric detector arrays

Similar concepts applied at HZDR ELBE facility (O. Zarini et al, LA³NET workshop, Dresden, April 2014) and at SLAC LCLS (T. J. Maxwell et al, PRL 111, 184801, 2013)

Concept of electro-optic profile diagnostic

(all-optical intra-beamline pickup of relativistic bunch Coulomb field)

Principle: Convert Coulomb field of e-bunch into an optical intensity variation

Encode Coulomb field on to an optical probe pulse - from Ti:Sa or fibre laser

Detect polarisation rotation proportional to E or E², depending on set-up

Range of Electro-Optic Techniques

0

Variations in read-out of optical temporal signal

Spectral Decoding

Spatial Encoding

Temporal Decoding

Spectral Upconversion/ EO Transposition

- Chirped optical input
- Spectral readout
- o Use time-wavelength relationship
- o Ultrashort optical input
- o Spatial readout (EO crystal)
- Use time-space relationship
- Long pulse + ultrashort pulse gate
- Spatial readout (cross-correlator crystal)
- Use time-space relationship
 - o quasi-monochomatic optical input (long pulse)
 - o Spectral readout
 - $\circ~$ Uses FROG-related techniques to recover bunch info

complexity

demonstrated

time resolution

1. Spectral Decoding (EOSD)

Attractive simplicity for low time resolution measurements e.g. injector diagnostics

Rely on t- λ relationship of input pulse for interpreting output optical spectrum.

Resolution limits come from the fact that the EO-generated optical field doesn't have the same t- λ relationship

temporal resolution limits:

EOSD limited by chirp Can relate to FWHM durations...

$$\tau_{\rm lim} = \sqrt{12\pi\beta}$$

 $\tau_{\rm lim} = 2.61 \sqrt{T_0 T_c}$; for a Gaussian pulse

Conclusion: Unlikely to get better than 1.0 ps (FWHM) with Spectral Decoding

Collaboration with CLIC Project at CERN

Feasibility study for 3 TeV electron-positron collider

UK collaboration with CLIC 2010-2017

Main Beam Instrumentation for CLIC

CTF3 two-beam test stand

EO Project at Dundee & Daresbury:

- Provide EOSD bunch monitor for 200 MeV, 1.4 ps CALIFES beam at CLIC Test Facility
- Measure 150 fs electron bunches on CLIC with a precision of <20 fs using EO Spectral Upconversion techniques

CLIC CTF3 Electro-Optic Bunch Temporal Profile Monitor

Stage 1 & Chamber 1

Stage 2 & Chamber 2

Optics in laser lab

Progress:

- (1) Timing overlap E-bunch and laser pulse measured by streak camera
- (2) First EO signal measured by a photomultiplier

Resolution improvements may include:

- -- Thinner crystal
- -- Fibre instead of optical transfer line
- -- New algorithm (data acquisition and processing)
- -- New materials replacing EO crystal

R. Pan et al. CERN CLIC workshop, Feb 2014

2. Single-shot Temporal Decoding (EOTD)

(currently gives best time resolution)

Spatial image of SHG pulse

Thin EO crystal (ZnTe or GaP) produces a optical temporal replica of Coulomb field Measure optical replica with *t-x* mapping in 2nd Harmonic Generation (SHG)

- stretched & chirped laser pulse leaving EO crystal assembly measured by short laser pulse via single-shot cross correlation in BBO crystal
- large (~1mJ) laser pulse energy required (via Ti:Sa amplifier)

Technique limited by

- gate pulse duration (~50 fs, although FROG, etc. could improve)
- EO encoding efficiency, phase matching •

Practical limitations: complexity of laser systems involved transporting short-pulse laser (gate pulse only)

EOTD Electro-optic diagnostics at FLASH

- o temporal decoding
- spectral decoding
- benchmarking against TDC
- 450 MeV, γ ~1000
- bunches with peak + pedestal structure
- 20% charge in \sim 100 fs spike

Time resolution $\sigma_z \sim 90$ fs (rms)

Temporal Decoding Diagnostic

$60 - 200 \mu m$ thick GaP detector

Fundamental Problem: Encoding Time Resolution material frequency response, $R(\omega)$

- velocity mismatch of Coulomb field and probe laser
- frequency mixing efficiency, $\chi^{(2)}(\omega)$

May be soluble by:

- 1. Organic crystals (e.g. DAST, DSTMS, OH1) or poled polymeric materials
- 2. Artificially-created "metamaterials" under development at Dundee

"silver-glass nanocomposites"

Consider a single-frequency probe and short Coulomb field "pulse"

EO Transposition System

D. A. Walsh et al, Proc. IBIC 2013, Oxford UK, 474-477

- 1. Nanosecond laser-derived single-frequency probe brings reliability
- 2. "Electro-Optic Transposition" of probe encodes temporal profile
- 3. Non-collinear optical parametric chirped pulse amplification (NCOPCPA) amplifies signal
- 4. Full spectral amplitude and phase measured via FROG / Grenouille technique
- 5. Coulomb field (bunch profile) calculated via time-reversed propagation of pulse

Benchmarking & Validation 1

Femtosecond laser-based test bed (STFC Daresbury Laboratory)

Femtosecond laser pulse spectrally filtered to produce narrow bandwidth probe

Investigation of measurement thresholds / signal-to-noise ratios

Important for defining system requirements

Benchmarking & Validation 2

EOT Temporal Resolution

SH of 1024 nm

at 532 nm

EO transposition scheme is now limited by materials:

phase matching, absorption, stability

Collaboration with MAPS group, University of Dundee on development of novel EO materials

- Potential to produce an enhancement of nonlinear processes through metallic nanoparticles
- THz field-induced second harmonic enhancement under investigation

A key property of the EO Transposition scheme may be exploited

- FROG (Grenouille) retrieves the spectral amplitude and phase
- At frequencies away from absorptions, etc., the spectrum should still be faithfully retrieved
- Potential to run two "tried and tested" crystals with complementary response functions side-by-side to record FULL spectral information!

Picosecond laser X-Y scanning optics

Ultrashort laser configuration for EO materials processing

inverted microscope set-up to measure second-harmonic generation from metamaterial samples (Talisker picosecond laser off to right of photos).

Jan 2014

Summary of ultra-short bunch techniques

• Transverse deflection cavity / zero crossing

- <10fs resolution capability, in principle
- large infrastructure for high energies
- destructive techniques
- Radiative spectral techniques
 - demonstrated with extreme broadband & single-shot capability
 - empirical tune-up, stabilisation problems

• Electro-optic temporal techniques

- limited by materials and optical characterisation
- solution in multiple-crystal detectors /alternative materials (?) and in FROG-like techniques
- Electro-optic upconversion / transposition
 - converts extreme broadband signal into manageable optical signal
 - strong potential for empirical feedback system

Selected References

A femtosecond resolution electro-optic diagnostic using a nanosecond-pulse laser D.A. Walsh, W.A. Gillespie, S.P. Jamison TUPC41 Proceedings of IBIC2013, Oxford, UK ISBN 978-3-95450-127-4, 474-477

Bunch length monitor using EO techniques <u>http://indico.cern.ch/event/275412/session/3/contribution/112</u> D A Walsh, S P Jamison, W A Gillespie, M A Tyrk, R Pan, T Lefevre CLIC Workshop 2014, 3-7 Feb 2014, CERN, DESIGN & SYSTEM TEST activities Contribution ID : 112

Coherent-Radiation Spectroscopy of Few-Femtosecond Electron Bunches Using a Middle-Infrared Prism Spectrometer T. J. Maxwell, C. Behrens, Y. Ding, A. S. Fisher, J. Frisch, Z. Huang, and H. Loos Phys. Rev. Lett. **111**, 184801, October 2013

The role of misalignment-induced angular chirp in the electro-optic detection of THz waves D.A. Walsh, M.J. Cliffe, R. Pan, E.W. Snedden, D.M. Graham, W.A. Gillespie, S.P. Jamison Optics Express, June 2014 (in press)

Jhank you for your attention

EO Detection solution in thin films & 2D structures

- to bypass propagation effects

Nano-structured materials

- Electro-optic effect from short-range structure.
- ... limited experimental demonstrations

Materials and Photonic Systems (MAPS) Group

Fabrication & Applications of Nanocomposites

Dundee group expertise:

- Metal-dielectric nanocomposites (MDN)
 Ag & Au
- DC electric field-assisted selective dissolution of nanoparticles in nanocomposites (patented technology)
- Laser structuring of metal surfaces

Nanosecond laser irradiation of glass with embedded silver nanoparticles at 532 nm

- Wavelength: 532 nm
- Pulse length ~ 6 ns at 50 kHz
- Laser fluence ~ 1.5 J/cm²
- Beam spot diameter ~ 60 μm
- Writing speed: 10 mm/s
- ~ 300 pulses per spot

