

Laser Based Alignment Systems for CLIC

Guillaume Stern

May 5, 2014

Outline

- 1. Background
- 2. CLIC study and pre-alignment
- 3. LAMBDA project at CERN
- 4. Comparison with other laser based alignment systems
- 5. Summary and outlook

Background

- PhD student in the Large Scale Metrology section of CERN
- Large Scale Metrology section responsible for the metrology and alignment of accelerators and detectors at CERN
- Typical alignment accuracy
 - From a few mm down to a few µm
- Typical techniques
 - Standard surveying instrumentation (total stations, optical levels, digital photogrammetry, laser trackers)
 - Micrometric alignment systems (Wire Positioning Systems and Hydrostatic Levelling Systems)

CLIC study

- CLIC: Compact Linear Collider
- Study for a future positron/electron collider
- Error budget allocated to the absolute positioning of the zeroes of components: radius of the cylinder 10μm (1σ) over 200m

Pre-alignment

- Key issue for beam emittance preservation
- Takes place without beams in the linacs, in order to implement beam based alignment and beam based feedbacks

Type of pre-alignment	Accuracy (rms)
Standard (as in other	100 µm
accelerators)	
Active (for CLIC)	Down to 10 µm

Pre-alignment strategy (1)

- Alignment reference: stretched wire or laser beam
- Combination: sensors + actuators
- Overlapping sections of 200m

Pre-alignment strategy (2)

LAMBDA project

- LAMBDA: Laser Alignment Multipoint Based
 Design Approach
- Idea:
 - Laser beam (under vacuum) as straight line reference
 - Camera/shutter assemblies to measure distance to laser beam
- Proposal first described in 2010, launching the idea of PhD project

LAMBDA project: principle

LAMBDA project: sensor

- Requirements
 - Compact and compatible with its environment
 - Measurement repeatability 1µm, accuracy 5µm
 - Low cost
 - Micrometric repositioning of each shutter at a frequency above 50 Hz

11

LAMBDA project: lessons learnt from first tests

- Laser spot stability within 5 µm over 35 m (under vacuum)
- Measurements to be done within short time interval (few seconds)
- Shutter roughness to be chosen similar in x and y directions
- Beam expander needed to have laser beam diameter within few centimetres
- Vacuum pipe needed to improve laser spot stability

Observing diffraction pattern of Fresnel zones plates (SLAC)

Advantages	Drawbacks
Large number of targets (~300)	Repositioning of targets
Rad-hard	Non compact targets

Observing diffraction pattern of an iris (Spring 8)

Observing diffraction pattern of spheres (DESY)

Advantages	Drawbacks
Static targets	Limited number of targets (~16)
	Measurement uncertainty depends on longitudinal position

Observing diffraction pattern of a plate (NIKHEF)

Advantages	Drawbacks
Static plate	Only 1 target

Observing laser spot with open / close QPD's (KEK)

QPD: quadrant photo-detectors

Advantages	Drawbacks
Large number of photo-detectors	Uncertainty due to open/close photo-detectors

Comparison of several laser based alignment systems

		Wanted accuracy	Already achieved
Observing diffraction pattern	of Fresnel zone plates (SLAC)	500μm (1σ) over 3000m	Estimated accuracy: 500μm (1σ) over 3000m
	of an iris (SPRING 8)	10μm (2σ) over 10m	Pointing stability: 10μm (2σ) over 10m
	of spheres (DESY)	300μm (1σ) over 150m	Estimated achievable accuracy: 100/200 μm (1σ) over 150m
	of diffraction plate (NIKHEF)	10μm (1σ) over 200m	Estimated achievable accuracy: 1μm (1σ) over 140m
Observing laser spot	with open/close quadrant photo- detectors (KEK)	100μm (1σ) over 500m	Pointing stability: 40μm Estimated accuracy: 100μm (1σ) over 500m
	with open/close shutters (CERN)	10μm (1σ) over 200m	Pointing stability: 5μm (1σ) over 35m

Summary and outlook

- (Active) pre-alignment of CLIC requires 10μm accuracy at 1σ over 200m
- No existing system meets such requirements
- Proposal of a CERN laser based alignment system
 - Laser beam as straight line reference
 - Camera/shutter sensors to measure distance to laser beam
 - Already achieved: $5\mu m$ pointing stability at 1σ over 35m
- Future steps for sensor development
 - Testing different shutter types (e.g. ceramic)
 - Testing open/close mechanism

www.cern.ch