
Big PanDA integration with Titan
LCF.

Danila Oleynik

UTA / JINR

Outline

• Titan LCF specialty

• BigPanDA architecture for Titan

• PanDA Pilot changes

• Backfill

• Titan allocation policy

• Occupation algorithm. Initial testing.

• Issues.

2

Titan LCF specialty

• Titan Cray XT7
– 18,688 nodes
– node: 16 core, 32 + 6 GB RAM (2GB per core)

• Parallel file system shared between nodes, recently upgraded: project workspace
100TB quota (30 PB total capacity)

• Highly restricted access:
– One-Time Password Authentication;
– No network connection with worker nodes;

• 3 layers of nodes:
– Interactive nodes: user interactive login;
– Service nodes: job setup operations, managed through PBS/Torque directives;
– Worker nodes: job executions, managed through ALPS (Application Level Placement

Scheduler);

• Limitation on number of jobs in scheduler for one user
• Special data transfer nodes (high speed stage in/out)
• System naturally designed for parallel execution

3

BigPanDA architecture for Titan

• Pilot runs on HPC interactive node

• Pilot interacts with local job scheduler (PBS)

• Number of executing pilots number of available slots in local scheduler (???)

4

PanDA Pilot changes

• Native PanDA pilot was successfully started on Titan interactive
nodes.
– Correct definition of PanDA queue was needed.

• Main modification was performed for payload execution part:
runJobTitan.py module was developed based on runJob.py module.
– Method, which call payload execution was changed for run and collect

results of job execution through PBS;
– Interface with PBS job manager was implemented by using SAGA API

• Some minor modifications of cleanup procedures was done
(subdirectories cleanup).

• Proper setup and execution of MPI jobs through ALPS.
• Function for collecting information about available resources for

backfill was implemented
– Full PanDA workflow on Titan was done.

5

Opportunistic job backfill on Titan

• As a first step a simple algorithm was
implemented:
– Pilot queries MOAB scheduler about unused transient

resources

– Information about available resources returns in a
format that includes a number of currently
unscheduled nodes and period of their availability

– Pilot chooses the largest available block of free nodes
and generates appropriate job submission parameters
taking into account Titan’s scheduling policy
limitations

6

Titan scheduling policy

• Job’s wall-time limit depends on number of
requested nodes.

• For example one can’t request 100 nodes (1600
cores) for more than two hours (regardless of
declared period of backfill availability)

7

Min Nodes Max Nodes
Max Walltime

(Hours)
Aging Boost (Days)

11,25 – 24.0 15

3,75 11,249 24.0 5

313 3,749 12.0 0

125 312 6.0 0

1 124 2.0 0

Initial backfill tests on Titan

8

Submitted Account Nodes Cores Wait
Walltime

limit
Runtime State Completed

Mar, 04 16:26 CSC108 6 96 0.00 1:59:00 0,01 Completed Mar, 04 16:27

Mar, 04 16:52 CSC108 185 2960 0.07 5:59:00 0,02 Completed Mar, 04 16:58

Mar, 04 17:32 CSC108 608 9728 0.01 11:59:00 0,02 Completed Mar, 04 17:34

Mar, 04 17:45 CSC108 578 9248 0.01 11:59:00 0,03 Completed Mar, 04 17:47

Mar, 04 17:51 CSC108 1,649 26,384 0.00 11:59:00 0,03 Completed Mar, 04 17:53

Mar, 04 18:03 CSC108 636 10176 0.01 11:59:00 0,02 Completed Mar, 04 18:05

Mar, 04 18:09 CSC108 740 11840 0.13 11:59:00 0,02 Completed Mar, 04 18:18

Mar, 04 18:21 CSC108 577 9232 0.00 11:59:00 0,03 Completed Mar, 04 18:22

Mar, 04 18:25 CSC108 596 9536 0.04 11:59:00 0,02 Completed Mar, 04 18:28

• “Backfill capture” is almost instantaneous!
• No competition for the resource?
• More studies are planned

Issues

There are two scenarios of using resources:

1. Using MPI (“natural” payloads for HPC):
– Unpredictable size of output (output size may

changes with number of involved cores)

2. “Multiple Simultaneous Jobs”
– 100 simultaneous jobs in one submission;

– Job occupy minimum one node (not core);

– Significant redesign of Pilot (to take care about
set of PanDA jobs, against one)

9

