
Big PanDA on HPC/LCF Update

Sergey Panitkin, Danila Oleynik

BigPanDA F2F Meeting. March 2014

1

Outline

 Introduction

 BigPanDA architecture for Titan

 Pilot

 PanDA Pilot initial changes

 New features

 Next steps

 Workloads

 Current

 MPI based

 Summary

2

Current HPC resources for Big PanDA

 Currently we have accounts at:

 Oak Ridge Leadership Class Facility (OLCF)

 Titan (our own Big PanDA project (CSC108) allocation – 0.5M hours)

 Kraken (part of NSF XSEDE infrastructure, through UTK allocation)

 National Energy Research Scientific Computing Center (NERSC@LBNL)

 Hopper, Carver, Edison (through OSG allocation – 1.1M hours)

 We concentrate on ORNL development right now.

 Great support and interest from OLCF management in Big PanDA

 Significant CPU time allocation

 Parallel ports to NERSC machines

 Similar platforms to ORNL - Cray

3

Titan at ORNL features

 Titan Cray XK7 (#2 in Top 500)

 18,688 nodes with GPUs

 node: 16 core, 32 + 6 GB RAM (2GB per core)

 27 PetaFLOPs theoretical

 Parallel file system shared between nodes, recently upgraded: project workspace
100TB quota (30 PB total capacity)

 3 types of nodes:

 Interactive nodes: user interactive login

 Service nodes: job setup operations, managed through PBS/Torque directives

 Worker nodes: job executions, managed through ALPS (Application Level Placement
Scheduler)

 Special data transfer nodes (high speed stage in/out)

 Highly restricted access:

 One-Time Password Authentication

 No network connection with worker nodes

 Limitation of number of jobs in scheduler for one user

 4

PanDA set up on HPC platforms

 Main idea - try to reuse existing PanDA components and workflow
logic as much as possible

 PanDA connection layer runs on front end nodes, in user space

 All connections to PanDA server at CERN are initiated from the front

end nodes

 “Pull” architecture over HTTPS connections to predefined ports on

PanDA server

 For local HPC batch interface use SAGA (Simple API for Grid

Applications) framework

 http://saga-project.github.io/saga-python/

 http://www.ogf.org/documents/GFD.90.pdf

5

http://saga-project.github.io/saga-python/
http://saga-project.github.io/saga-python/
http://saga-project.github.io/saga-python/
http://saga-project.github.io/saga-python/
http://saga-project.github.io/saga-python/
http://saga-project.github.io/saga-python/
http://www.ogf.org/documents/GFD.90.pdf
http://www.ogf.org/documents/GFD.90.pdf

BigPanDA architecture for Titan

 Pilot(s) executes on HPC interactive node

 Pilot interacts with local job scheduler (PBS) to manage job

 Output transferred to a designated Grid site

6

PanDA Pilot initial changes

 Native PanDA pilot was ported to Titan interactive nodes.

 Correct definition of PanDA queue was needed.

 Main modification was performed for payload execution part:

runJobTitan.py module was developed based on runJob.py module.

 Method, which call payload execution was changed for run and collect
results of job execution through PBS;

 Interface with PBS job manager was implemented by using SAGA API

 Some minor modifications of cleanup procedures was done

(subdirectories cleanup).

7

New features in Pilot

 Proper setup and execution of MPI jobs through ALPS.

 Function for collecting information about available resources for

backfill was implemented

 Simple service for Pilots management on Titan was developed.

 Full PanDA job submission chain on Titan was tested.

8

PanDA jobs on Titan

9

Dealing with Transformations

 On a Grid worker node pilot starts a transformation to pull in and set up
user payload

 From pilot’s point of view transform is a part of payload.

 When you submit a job using prun it “wraps/adds” runGen.py

transformation script that pilot uses.

 runGen.py is ~1000 lines of Python code

 runGen.py needs internet connection (~5 wget), to DDM, to PanDA,,etc

 Problem for HPC application

 We removed Pilot from worker node space to a place with internet
connection

 Transform still needs to be executed on worker node.

 Can’t use standard grid transforms. Need a substitute of some kind.

10

New transforms for HPC

 Substitute ATLAS transform with our custom transform script specific
to Titan.

 Sets up Titan specific environment – like appropriate modules, etc

 Sets up workload specific environment

 Executes workload

 Right now every workload has it’s own local transform script

 Workloads are precompiled and installed on Titan

 Transforms are installed on Titan

 Simple python scripts, potentially just shell scripts

11

Workloads

 Several workloads were ported to Titan

 Root,etc

 Root based ATLAS analysis

 Limits setting code (aTGC)

 Event generators

 SHERPA (v. 2.0.b2 and v. 1.4.3) was ported to Titan and Hopper

 MadGraph 5 (v. 1.5.12) was ported to Titan and Hopper

 ALPGEN v 1.4 ported to Titan

 Simple examples and tutorials for EvGens run

 Started ATLAS specific ALPGEN test runs on Titan

12

Limits on aTGC Calculations

 Request from Brian Lindquist (USB) came through ADC to help with
his project.

 Limits setting for anomalous triple gauge coupling calculations.

 CPU intensive

 Single threaded job takes ~50 hours to calculate one point.

 Typically 1000 points are needed for one set of parameters.

 Several sets of parameters are needed for analysis.

 C++ code

 Code uses RooFit extension of Root.

 Can be ran in multi-threaded mode .

 Difficult to run on the Grid. Ideal workload for HPC.

 Converted code to use MPI libraries

 Ran for 50k core-hours run on Carver@NERSC

13

Need for MPI

 To run effectively on HPC MPI aware workloads are needed

 Use of MPI will allow us to run multiple independent serial jobs as an

ensemble, with just one submission at time.

 Every job knows it’s place in a group and size of the group

 Good for backfill job submission

 MPI allows to adjust the size of submitted jobs in a natural way.

 The size of the available "backfillable" gap becomes MPI rank.

 MPI allows to avoid, or at least mitigate, batch queues limits on

number of simultaneously submitted tasks

 As a separate note: GPU aware workloads are prime targets for HPC

these days.

 More efficient use of allocated time. Accounting system counts whole
node as a node with GPU.

 It would be great to have such codes in ATLAS. 14

MPI Workloads

 Workloads with Native MPI support (SherpaMPI, etc)

 Customized ATLAS codes (f.e. like aTGC code or Alpgen@ANL)

 MPI transforms

 We tested a transform to run a set of ALPGEN jobs as MPI collection

 In principle this type of transforms can be used for other non MPI jobs

 Working on running ATLAS Z-tautau-jets Alpgen production on Titan

 Problem with Alpgen input file definition extracted from ATLAS job

definition

 Very long Alpgen “warm-up” phase (>>24hours) prevents from
running this on Titan directly

 Discussing this with ANL group. Hopefully resolved soon.

 Issue with random number generation for very large number of

events. Limited generator period.

 Working on more general Alpgen transform for Titan based on

ATLAS AlpGenUtil.py

15

Opportunistic backfill on Titan

 More details in Danila’s slides

 As a first step a simple algorithm was implemented:

 Pilot queries MOAB scheduler about unused transient resources

 Information about available resources returns in a format that includes a

number of currently unscheduled nodes and period of their availability

 Pilot chooses the largest available block of free nodes and generates

appropriate job submission parameters, taking into account Titan’s

scheduling policy limitations

 Pilot uses MPI based transform

16

Titan Backfill 1

17

Indefinitely available

nodes

Nodes available

for a limited time

Availability time

estimate

Availability query index

Initial backfill tests on Titan

18

Submitted Account Nodes Cores Wait
Walltime

limit
Runtime State Completed

Mar, 04 16:26 CSC108 6 96 0.00 1:59:00 0,01 Completed Mar, 04 16:27

Mar, 04 16:52 CSC108 185 2960 0.07 5:59:00 0,02 Completed Mar, 04 16:58

Mar, 04 17:32 CSC108 608 9728 0.01 11:59:00 0,02 Completed Mar, 04 17:34

Mar, 04 17:45 CSC108 578 9248 0.01 11:59:00 0,03 Completed Mar, 04 17:47

Mar, 04 17:51 CSC108 1,649 26,384 0.00 11:59:00 0,03 Completed Mar, 04 17:53

Mar, 04 18:03 CSC108 636 10176 0.01 11:59:00 0,02 Completed Mar, 04 18:05

Mar, 04 18:09 CSC108 740 11840 0.13 11:59:00 0,02 Completed Mar, 04 18:18

Mar, 04 18:21 CSC108 577 9232 0.00 11:59:00 0,03 Completed Mar, 04 18:22

Mar, 04 18:25 CSC108 596 9536 0.04 11:59:00 0,02 Completed Mar, 04 18:28

• Jobs submitted through PanDA to Titan

• “Backfill capture” is almost instantaneous!

• No competition for the resource?

• More studies of backfill properties are planned

Next steps

 Additional redesign of Pilots components still needed for:

 parallel execution of pilots on same worker node

 Changing of data format for parameters which describe setup and

execution of payload (partly done for current PanDA – Titan execution,

quite difficult for debug due to dependencies from experiment specifics

and different types of jobs

 Multi HPC site demonstrator in PanDA (Titan, Kraken, NERSC, EOS,…)

 New Cray XC30 installation became available at ORNL – called EOS

 744 nodes, Xeon E5-2670, no GPUs

 Better scheduling policy limits

 Need a meeting with Titan folks to discuss backfill status and possibilities

 Discuss with ALICE (Ken Read) possible workloads to run on Titan as

multi-VO demonstrators

 Take another look at ATLAS software on Titan (cvmfs)

19

Summary

 Work on integration of OLCF, NERSC machines and PanDA is in
progress

 Successful “backfill through PanDA” demonstrator on Titan

 Workloads ports are in progress

 HEP event generators ported (ALPGEN, Sherpa, Madgraph)

 Conversion of ATLAS code to MPI

 aTGC limits calculations performed. Direct code conversion to MPI. 50k

core hours delivered @NERSC

 MPI transform for ALPGEN tested

 MPI and GPU aware codes are needed

 Discussion about SUSY parameter scan has started

20

