

Workshop on picosecond photon sensors

13th March 2014

UniversityHospital Heidelberg

Timing in imaging applications for ion beam therapy

Ilaria Rinaldi

Heidelberg University Hospital and Ludwig Maximilians University Munich

The Heidelberg Ion Therapy center

Rationale for ion therapy and range verification

Present

Reduced integral dose (factor \sim 3)

 (a) Tumor volume $\langle \rangle$ Organ at risk

Paganetti AAPM 2012

Future

- Reduction of safety margins (dose escalations; higher cure rate)
- Use of new irradiation fields (use of sharp distal penumbra of Bragg-peaks)

Rationale for ion therapy and range verification

Present

Reduced integral dose (factor \sim 3)

Paganetti AAPM 2012

Future

- Reduction of safety margins (dose escalations; higher cure rate)
- Use of new irradiation fields (use of sharp distal penumbra of Bragg-peaks)

Rationale for ion therapy and range verification

Present

Reduced integral dose (factor \sim 3)

Paganetti AAPM 2012

Future

- Reduction of safety margins (dose escalations; higher cure rate)
- Use of new irradiation fields (use of sharp distal penumbra of Bragg-peaks)

◯ How do we reduce range uncertainties?

• Increasing accuracy in range prediction

Ion radiography Ion CT

• In-vivo range verification

Prompt gamma cameras PET

- **characteristics of**
- **the transversed**
- **materials**

Target

Detector development: Ion tomography

- 61 PPIC 30x30 cm2
- 3mm PMMA absorber slabs
- 2 Modules of I3200 Thirty two-channel Electrometer+A500 Real Time Controller
	- Active scanning beam delivery system

Rinaldi et al., PMB 58 (2013), 413, Highlights of 2013 Rinaldi et al., PMB (2014a,2014b), submitted

Ion radiography and tomography

X-ray planning CT

lon treatment

 $1-3%$ range uncertainties

$\sum_{i=1}^n$ treatment is a therapy plan, and imaging the actual treatment volume, the actual treatment vo conformation of the delivered dose with the target volume can be verified and the target volume can be verified **Ion radiography and tomography**

Rinaldi et al., PMB (2014b), submitted

Rinaldi et a

Ion radiography and tomography

Ion radiography and tomography

point (NRP) and the beam intensity (I). In fact, $tRP = NRP/I$ The beam resides at a given raster point (RP) for a certain time and then slews to the next one. The residence time at a given raster point (tRP) is not known in advance and can vary depending on the number of particles delivered in a raster

 $\mathcal{L}_{\mathcal{A}}$. Relative beam intensity measured by an IC in the BAMS as a function \mathcal{A}

Typical RP duration is 0.8 to 1.0 ms but they will be as short as 100 μs

Intensity fluctuations of 30%

To reduce the dose delivered to the patient we have to reduce the NRP

Old 2 Modules of I3200 Thirty two-channel Electrometer $+$ A500 Real Time Controller **Ion radiography and tomography**

New \Box I128 Ionization Chamber Controller

We confirmed that the unit could acquire 50000 contiguous readings at 120 μsec integration without buffer overflow, provided that the host rate was increased from 20 to 200 Hz.

Recommendations for the I128

The most valuable single change will be to introduce an adaptive integration mode, where integrations are numerically averaged while the "beam on spot" gate is high, and only the final average is put in the buffer. This should give improved signal to noise without the need for post-processing, and will considerably increase the number of spots that can be acquired without overflowing the buffer.

O Ion radiography and tomography

- Improvement of the spatial resolution
- Position sensitive detectors
- Integration in clinical workflow and facilities

Bortfeldt, Rinaldi et al., PMB (2014), in preparation

Ion radiography and tomography

- Micromegas doublet with 6.4×6.4 cm2 active area and 128 readout strips per layer - resistive strip Micromegas with two perpendicular strip planes are read out using APV25 front-end boards, interfaced by the Scalable Readout System - trigger on scattered particles, creating coincident hits in two scintillators.

The radiography and tomography

Measurements with:

- protons with energies between 48 MeV/u and 221 MeV/u and particle rates of 80 MHz to 9 GHz

- carbon ions with energies between 88 MeV/u and 430 MeV/u particle rates of 2 MHz to 80 MHz

Prompt gamma based range verification

ENVISION collaboration: Dauvergne et al (IPNL Lyon), Prieels et al (IBA)

How to measure prompt gamma

Collimated camera Single and multislit

Ray (IPN Lyon) hodoscope (x.y) x position carbon y position beam stop (delayed) patient photon detectors (z collimators

Compton camera electronic collimation

Common device: Hodoscope

Hardware

- **array of scintillating fibres (1x1 mm2)**
- **2 prototypes: 2x32 and 2x128 fibres**
- **time resolution ≤ 1 ns**
- **goal: count rates up to 10⁸ 1/s**

Electronics

- **development of ASIC**
- **new version with DLL**

 ⇒ timing

IPN Lyon

Test measurements: HIT with carbon ions

Single rates

- silicon detector: $2.5 \cdot 10^{-4}$ cts/ion (scaler, thres. 350 keV)
- absorber: $4.5 \cdot 10^{-3}$ cts/ion (scaler, thresh 180 keV)

Coincidence rates

- all events: $2.6 \cdot 10^{-5}$ cts/ion (scaler)
- uncharged: $2.9 \cdot 10^{-6}$ cts/ion (software cuts)

Extrapolation to prototype dimensions

- silicon det.: $1.4 \cdot 10^{-2}$ cts/ion single
- absorber: 6.6 · 10−2 cts/ion single *IPN Lyon*

Test measurements: HIT with protons

Single rates

- silicon detector: $8.9 \cdot 10^{-6}$ cts/ion (scaler, thres. 350 keV)
- absorber: $4.3 \cdot 10^{-4}$ cts/ion (scaler, thresh 180 keV)

Coincidence rates

- all events: $1.7 \cdot 10^{-7}$ cts/ion (scaler)
- uncharged: $9.2 \cdot 10^{-8}$ cts/ion (software cuts)

Extrapolation to prototype dimensions

- silicon det.: 5 · 10−4 cts/ion single
- absorber: $6.3 \cdot 10^{-3}$ cts/ion single

For proton therapy conditions (1010 p/s)

absorber needs to be segmented *IPN Lyon*

Thank you

Acknowledgements

… to Prof. Dr. Katia Parodi and Prof. Dr. O. Jäkel for the financial support

… to my colleagues from the working group "MC modeling and in-vivo imaging" of HIT

… to all the members of the IPNL Lyon group: D. Dauvergne, E. Testa, J. Krimmer,

… to B. Voss of GSI in Darmstadt for the detector support

… to M. Testa, H. Paganetti and Hsiao-Ming Lu of MGH Boston

… to the FLUKA collaboration

… to the DFG for the financial support