Timing detectors for proton tagging at theLHC

Christophe RoyonIRFU-SPP, CEA Saclay

Timing workshop, March 12-14 2014, Clermont-Ferrand, France

Contents:

- Proton tagging (AFP/PPS)
- Physics motivation
- Pile up studies
- Timing detectors

LHC: Tagging intact protons in CMS-Totem/ATLAS

- Large Hadron Collider at CERN: proton proton collider with ¹³ TeVcenter-of-mass energy restarting in ²⁰¹⁵
- Tagging intact protons at the LHC

Introduction: The AFP/PPS detector

- \bullet Tag and measure intact protons at ± 210 m at the LHC
- Allows to access masses of produced object in ATLAS between ³⁵⁰ and1.4 TeV: contrain the kinematics/mass of the produced object by measuring final state protons (system fully constrained)

AFP detector location

- Detect intact protons in the final states
- Detector stations located at ²⁰⁶ and ²¹⁴ ^m on both sides of the ATLAS interaction point (similar for CMS/Totem)
- AFP detectors: Radiation hard "edgeless" 3D Silicon detectors, ¹⁰ ps timing detectors
- Allows running in high pile up conditions by association with correct primary vertex: Access to rare processes

Detection of intact protons: roman pot technique

• How to detect intact protons? Tag the proton in the final state, scattered at small angles, using roman pot detectors

Physics: Search for $\gamma\gamma WW$ quartic anomalous coupling

- Study of the process: $pp \rightarrow ppWW$
- Standard Model: $\sigma_{WW} = 95.6$ fb, $\sigma_{WW}(W = M_X > 1 TeV) = 5.9$ fb
- $\bullet\,$ Process sensitive to anomalous couplings: $\gamma\gamma WW$, $\gamma\gamma ZZ$, $\gamma\gamma\gamma\gamma;$ motivated by studying in detail the mechanism of electroweak symmetry breaking, predicted by extradim. models
- $\bullet\,$ Rich $\gamma\gamma$ physics at LHC: see E. Chapon, O. Kepka, C. Royon, Phys. Rev. D78 (2008) 073005; Phys. Rev. D81 (2010) 074003; S.Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert, ArXiv 1312.5153

Results from full simulation

• Effective anomalous couplings correspond to loops of charged particles, Reaches the values expected for extradim models (C. Grojean, J. Wells)

Table 9.5. Number of expected signal and background events for 300 fb⁻¹ at pile-up $\mu = 46$. A time resolution of 10 ps has been assumed for background rejection. The diffractive background comprises production of QED diboson, QED dilepton, diffractive WW, double pomeron exchange WW.

• Improvement of "standard" LHC methods by studying $pp \rightarrow l^{\pm} \nu \gamma \gamma$ (see P. J. Bell, ArXiV:0907.5299) by more than 2
orders of magnitude with 40/300 fb⁻¹ at LHC orders of magnitude with 40/300 fb−¹ at LHC

- $\bullet\,$ Search for $\gamma\gamma\gamma\gamma$ quartic anomalous couplings
- Couplings predicted by extra-dim, composite Higgs models
- Use forward detectors to suppress background

Search for quartic $\gamma\gamma$ anomalous couplings: Results

- No background after cuts for 300 fb $^{-1}$ without needing time detector information
- Exclusivity cuts needed to suppress backgrounds:
- String theory/grand unification models predict couplings via radions/heavy charged particles/dilatons for instance up to $10^{-14}\text{-}10^{-13}$
- See S.Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert, ArXiv 1312.5153

Detector I: 3D Si detector

- Key requirements for the Si detector
	- – $-$ Spatial resolution of 10 (30) μ m in x (y) direction over the full detector coverage (2 cm \times 2 cm); Angular resolution of 1 μ rad
	- Minimal dead space at the edge and radiation hardness
- Sensors: double-sided 3D 50 \times 250 micron pixel detectors (FBK) with slim-edge dicing (Trento) and CNM 3D pixel detectors with slim-edge dicing (dead zone of ⁸⁰ microns instead of 250)
- Upgrade with 3D edgeless detectors by 2020: SLAC, Manchester, Oslo, Bergen...

Why do we need timing detectors?

We want to find the events where the protons are related to anomalous event production and not to another soft event (up to ³⁵ events occuring at the same time at the LHC!!!!)

Pile up treatment and Proton distribution in AFP

- Generation of ⁷ TeV protons (Single diffractive and Double PomeronExchange events) with PYTHIA ⁸
- Transport at ²⁰⁶ metres from the Interaction Point (IP) with FPTRACKER/MADX (program from the LHC beam division allowingtransport through the magnets)

- Proton distribution $(X$ distance from the horizontal axis on one side for SD, and correlations between both x on each side of ATLAS for DPE events)
- Probability for ^a proton to be tagged (taking into account SD/DPEcross sections) for one bunch crossing: 0.01% (double tag on each side), 1.6% (single tag on one side), 97% (no tag)

Detector II: first kind of timing detectors

- Measure the vertex position using proton time-of-flight: suppresses highpile up events at the LHC (50 events in the same bunch crossing), allows to determine if protons originate from main interaction vertex
- Requirements for timing detectors
- – 10 ps final precision (factor 40 rejection on pile up)
- – $-$ Efficiency close to 100% over the full detector coverage
- – $-$ High rate capability (bunch crossing every 25 ns)
- – $-$ Segmentation for multi-proton timing
- level ¹ trigger capability
- \bullet QUARTIC has 4 \times 8 array of quartz bars; Each proton passes through eight bars in one of the four rows and one only needs ^a 30-40 ps measurement/bar since one can do it ⁸ times

Timing detectors

- Irradiance and Texas Collaboration: improve lifetime of MCP-PMTs: generation 2 25 μ m pore Planacon, resolution of the order of 20 ps; similar results with Hamamatsu with orthogonal ion barrier approach
- Resolution of 14-15 ps achieved in beam tests
- Difficulty to get full pixelisation with this detector close to the beam(important for high pile up beyond 2020)
- See talks by Andrew/Michael/Jim

Different QUARTIC detector scenarii

• ³ different kinds of pile up conditions to be considered: 50, ¹⁰⁰ and ³⁰⁰

- ³ different scenarii of QUARTIC considered (bar ¹ is the closest to the beam):
	- – $-$ Scn1: 7 bar detector: 2 mm width for bar 1, 3.25 for the others
	- – $-$ Scn2: 10 bar detector, 2 mm width for all bars
	- – $-$ Scn3: 20 bar detector, 1 mm width for all bars
- Inefficiency calculation: Probability to get ^a proton from pile up and ^a proton from signal in the same bunch crossing

Bar inefficiencies

Pixel solution I: Thin diamond sensors

See talk by Gabriele

INFN Roma Tor-Vergata group (R. Cardarelli et al.):

- Sensor thinning means faster signal and less polarization effects
- Using 100 um planar sensors
- Packaging 5 layers in series (under test, results soon, test beam co \bullet

Pixel solution II: Timing with silicon detectors

See talk by Nicolo

Pixel solution II: Timing with silicon detectors

Resolution for 100 and 300 µm pixel

Excellent time resolution requires thicker detectors

Readout Electronics: SAMPIC chip

- Development of ^a fast timing chip in Saclay SAMPIC:
- Uses waveform sampling method
- –- Sub 10 ps timing, 1GHz input bandwidth, no dead time for targeted data taking at ² Gbit/s
- ¹⁰ bit Wilkinson on chip for analog to digital conversion; Wilkinson digitisation at 2Gsamples/s
- –- Low cost: 10 \$ per channel
- See talk by Eric, Dominique

Inefficiencies for pixel solution

Leads to slightly smaller inefficiencies

Conclusion on pile up studies

- Scenario with ⁷ bars leads to small but non negligible inefficiencies, upto about 20% for the cloesest bar for a pile up of 100, and of $\sim10\%$ further away
- Scenarii with ¹⁰ or ²⁰ bars lead to smaller inefficiencies especially far away from the beam of \sim 3 $\%$
- Pixel solution does not lead to smaller inefficiencies close to the beamsince events do not spread much in $\left(x,y\right)$ plane
- However, pixel solution is better from beam-induced background (beamwall...) that could lead to ^a localised background in the detector
- Development of SAMPIC readout chip useful for pixel detectors

Conclusion

- AFP/PPS detectors to be installed in ²⁰¹⁵ Winter shutdown
- AFP/PPS aims at detecting intact protons in ATLAS: increases the physics potential of ATLAS (QCD, search for extra-dimensions in the universe via anomalous couplings between $\gamma, \, W, \, Z...)$
- \bullet Detector: Movable beam pipe; 3D Silicon position detectors (10-15 μ m precision); Timing detectors (Quartz or diamond detector, SAMPICelectronics)
- Many applications especially in PET imaging (Manjit Dosanjh)

