On Track Towards a Picosecond HPTDC

Jorgen Christiansen, (Lukas Perktold) CERN

Paul Davis, Shengli Liu, <u>James Pinfold</u> University of Alberta

The Talk Menu

TODAY'S SPECIALS

- · AFP the application
- Existing HPTDC ToF system ($\sigma \sim 15 \, \text{ps}$)
- Towards a picosend HPTDC ($\sigma \sim 3ps$)
- Where are we now tests
- · The future

dreamstime.com

ATLAS Forward Protons (AFP)

- Central Mass M is related to both protons' energy losses ξ_1 , ξ_2 :

AFP – Precision ToF

Main CEP background: overlap of SD protons with non-diffractive events = 'pile-up' background

Reduce by:

- central mass matching:
 - $M_{\text{central}} = M_{\text{AFP}} = (s \xi_{\text{Left}} \xi_{\text{Right}})^{1/2}$
- **–** <u>ToF</u>:
 - $z_{\text{vtx}} = c(t_{\text{left}} t_{\text{Right}})/2$
 - E.g.: $\sigma_{c} = 10 \text{ ps} \rightarrow \sigma_{c} = 2.1 \text{ mm}$
- -not a new idea; FP420:

Quartic Concept:

- Initial design 4 trains of 8 quartz bars
- Mounted at the Cherenkov angles~48°
- Isochronous same time arrival of Cherenkov light at MCP for each bar in the train.
- Multiple measurements improve readout resolution eg 30ps/bar →11ps for 8 bars

Time Measurement Chain

HPTDC Based ToF System

(Designed and built at the UofA)

- HPTDC board (9 channels)
 - 3 HPTDC chips (16 Ch)
 - Capable of 15 MHz throughput
 - σ_{Time} ≈ 14 ps with pulser
- 5 ps resolution CFD demonstrated
- New version of CFD nearly ready
 - An improved resolution observed ~3ps
 - Also provides ToT measurement

Timing System Resolution

Component		σ_t (ps)	σ_t (ps)	Action
		Current	Projected	
Radiator/MCP-PMT		19	17	Optimize radiator
(~10 pe's with 10 μ pore MCP)				
CFD		5	5	Larger dynamic range
HPTDC	14 ps with pulse	er 17	<9	New HPTDC chip
Reference Clock		3	3	-
Total/bar		26	20	
Total/ detector (6 ch)		11	8	

Reached and extrapolated timing resolution:

- Currently at 11-12 ps (Fall 2012 Test beam) with 6 bars;
- ultimate performance of this system is probably about 8 ps

-

The Full PS HPTDC ASIC Design

Demonstrator ASIC

- < 3ps-RMS resolution</p>
- < 50 mW/channel</p>
- Missing: PLL, Counter, Digital logic

Full TDC

- Based on HPTDC
- 64-128 Channels per ASIC
- 40 MHz input clock
- < 5 ps timing resolution (power consumption opt.)</p>

Radiation tolerant

- IBM 130 nm tech. with high resistivity substrate
- Error checking to counter SEU

Challenges in the PS Realm

Device mismatch

- -> Careful simulation and optimization
- -> Major impact on design and performance

Noise (power supply)

- -> Short delays, fast edges
- -> Separate power domains
- -> Substrate isolation
- -> Crosstalk

Signal distribution critical

- -> RC delay of wires
- -> balanced distribution of timing critical signals

Process-Voltage-Temperature variations

- -> LSB auto calibration to compensate for slow VT variations
- -> Global offset calibration still required

TDC Architecture

- Central interpolator with counter to extend dynamic range
- Measurements are ref'd to common ref. for synch. of multiple TDCs
- DLL for PVT auto calibration and power consumption trade-off
- Short propagation delays and fast signal slopes of timing critical signals to reduce jitter
- Calibration applied on a group of channels to reduce circuit overhead and calibration time
- Relatively constant power consumption make it less sensitive to change in hit rate

DLL – delay locked loop PVT – process, voltage, temperature

Fine Time Interpolator

- DLL to control LSB size
 - 32 fast delay elements in first stage 20 ps
 - Total delay of DLL 640 ps at 1.56 GHz
- Resistive Interpolation to achieve sub-gate delay resolutions
 - LSB size of 2nd stage controlled by DLL (Auto adjusts to DLL delay elements)

Resistive Interpolation

- Resistive voltage divider ->
 - Signal slopes > than delay, stabilized by DLL
- RC delay (capacitive loading)
 - Small resistances, small loads
 - Simulation based optimization of resistor values

TDC Demonstrator

L. Perktold / J. Christiansen

• 130 nm IBM technology

Test Setup

Tested

- Interchannel cross-talk smaller than ±
- PVT variations -0.2 ps/mV & 0.4 ps/deg
- Measured double-shot precision < 2.44 ps RMS
- Power consumption full 8-ch test chip
 - At 10 ps resolution 26mW(acquisition running) 21mW(acquisition stopped)
 - At 5 ps resolution 26mW(acquisition running) 21mW(acquisition stopped)

Conclusion

- Demonstrator TDC has been designed, prototyped and successfully tested.
 - . 3ps RMS time resolution has been achieved
 - Device mismatch considerably affects performance
 - -> Trade off: Power, Resolution, Calibration
 - Macro suitable for high resolution general purpose TDC
- Simulation of the whole ASIC has begun at UofA in order to produce complete design for first ASIC run
 - Radiation hard technology utilized
 - Switchable between high resolution (hi power) low resolution (lo power)
 - Working on reducing power requirements at high resolution
 - Larger number of channels (64-128) than initial HPTDC design
 - ~40 MHz data throughput possible
- Aiming for the first trial ASICs within a year.