Fundamental Limits of Timing Resolution for Scintillation Detectors

W. W. Moses, W. S. Choong, & S. E. Derenzo Lawrence Berkeley National Laboratory March 13, 2013

Outline:

- Basic Theory
- Real World Effects
- Optical Photon Propagation
- This work was supported in part by the U.S. DOE (contract No. DE-AC02-05CH11231) and in part by the NIH (NIBIB grant No. R01-EB006085).

The Fundamentals...

Timing Determined by I₀ (Initial PE Rate)
 I₀ = E_Y □ (Light Output / τ) □ Collect_Eff □ Quantum_Eff
 Look at Arrivial Times of Individual Photoelectrons

Time Jitter of nth Photoelectron

Jitter (fwhm) = 2.35 Sqrt(n) / I₀ First Photoelectron has Least Jitter

- Leading Edge Discriminator Often Used
- If the trigger level is at n photoelectrons, timing resolution ≈ jitter of nth photoelectron
- Valid if PD_Rise « PE Jitter « PPD_Fall (individual photoelectrons resolved)

First PE Traditionally Favored Described by Post & Schiff in 1960

Problem: Predicts Incredible Timing

"Poor" TOFPET

- LSO (40ns, 30k ph/MeV)
- Standard PMT (25% QE) \Rightarrow 66 ps fwhm PET Timing
- 50% CE
 - ⇒50 PE/ns

"Good" TOFPET

- LaBr₃ (15ns, 72k ph/MeV)
- UBA PMT (50% QE)

⇒ 3.7 ps fwhm PET Timing

• 75% CE

⇒900 PE/ns

Why? Real World Effects

- Overlap of photoelectron pulses
- Photodetector transit time jitter (Gaussian)
- Photodetector rise & fall time (Bi-Exponential)
- Intrinsic scintillator rise time (Exponential)

Our Contribution

- Optical transport in scintillator (Exponential)
- Estimated Through Monte Carlo Simulation
 Described by Hyman in 1964 & 1965

"Real World" Probability Density Function

"Real World" Jitter of nth Photoelectron

First PE No Longer Has Lowest Jitter Broad Minimum – Many PEs Have Similar Jitter

820 Combinations

- Initial Photoelectron Rate I₀: 10 10,000 PE/ns
- Intrinsic Scintillator Rise Time: 0 1 ns (exponential)
- Photodetector Transit Time Jitter: 0 0.5 ns fwhm (Gauss)
- Optical Photon Propagation Time: 0 0.2 ns (exponential)

Convolve w/ Photodetector Response to Simulate Analog Out (results insensitive to PD response, including rise time)

Simulate Leading Edge Discriminator with Optimized Threshold for Each Combination

Get Tables of Simulated Timing Resolution Fit Tables to Analytic Formula

Analytic Formula for Timing Resolution

Timing Resolution (ns fwhm) = $B / \operatorname{sqrt}(I_0)$

$$B(\tau_r, d, J, I_0) = sqrt[5.545 I_0^{-1} + 2.424 (\tau_r + d) + 2.291 J + 4.938 \tau_r d + 3.332 J^2 + 8.969 J^2 I_0^{-1/2} + 9.821 (\tau_r^2 + d^2) I_0^{-1/2} - 0.6637 (\tau_r + d) I_0^{-1/2} - 3.305 J (\tau_r + d) - 6.149 J I_0^{-1/2} - 0.3232 (\tau_r^2 + d^2) - 3.530 J^3 - 5.361 J \tau_r d - 9.287 \tau_r d I_0^{-1/2} - 5.814 J \tau (\tau_r^3 + d^3)]$$

*I*₀ = E_Y □ (Light Output / τ) □ Collect_Eff □ Quantum_Eff (photons/MeV/ns)

 τ_r = Intrinsic Scintillator Rise Time (ns)

J = Photodetector Transit Time Jitter (ns)

d = Optical Photon Propagation "Decay Time" (ns)

Formula Obtained Using "Eureqa" Software

Fit vs. True Value for B

Excellent Fit (RMS Deviation ~ 2%) For Virtually All Conditions, 0.5 < B < 2

Other Observations

No Other Significant Dependencies

 Photodetector Rise Time
 Photodetector Fall Time

- Timing Resolution Using "Optimal" Estimator that Uses *All* Detected Photoelectrons is $\leq 15\%$ Better than Leading Edge Timing (for $\tau_r = 0.5$ ns, d = 0.1 ns, J = 0.2 ns)
- Paper submitted to Phys. Med. Biol.

Timing Resolution Predicted If You Know:

- Initial Photoelectron Rate I₀
 - Gamma Ray Energy
 - Scintillator Luminosity
 - Scintillator Decay Time
 - Collection Efficiency
 - Quantum Efficiency
- Intrinsic Scintillator Rise Time
- Photodetector Transit Time Jitter
 - Optical Photon Propagation Time

What Value to Use for Propagation Time???

Estimate Using GEANT / GATE / DETECT

- Index of Refraction n = 1.82 (same as LSO)
- Light Generated as a Delta Function in Time at Random Positions in the Scintillator
- Three Surface Finishes Simulated
 - -Polished
 - -Chemically Etched
 - -Rough
- Two Simulation Types for Each Surface

–"Unified Model" ($\sigma_{\alpha} = 0^{\circ}$, 6°, and 12°)

-"RealReflector" (measured values in LUT)

Well-Described By Exponential Decay

Run Single Simulation w/ Infinitely Long Crystal
Superpose Signals from Positions x and 2L–x
Reflected Signal Less Important for Timing...

Simulation Results (Polished & Etched)

Simulation Results (Rough) 350 "Decay" Time (ps) 300 250 Unified Rough Tau (ps) Lookup Rough Tau (ps) 200 150 100 50 0 Distance from Photodetector (mm) 50 0 40 10 Unified "Rough" **Very Similar to** "Etched" and Unified Rough I0 "Polished" Amplitude Lookup Rough I0 0.1 Lookup "Rough" is VERY Different 0.01 Distance from Photodetector (mm) 50 0 10 40

Simulation Results (Rough Surface)

Different Models Predict Very Different Behavior

Scaling Crystal Dimensions Photo-W detector $\leftarrow X \longrightarrow$ 1.5 L **1.5** t Photo-1.5 W detector

← 1.5 x →

 Simulations Run on 3 mm x 3 mm Crystal
 Results for a W x W Crystal Can Be Found By Multiplying All Distances & Times on Graphs by W/3 Conclusions

- Simulation used to estimate timing resolution for many combinations of scintillation detector parameters
- Includes virtually all known effects
- Results encapsulated in "simple" formula that predicts timing resolution
- All inputs to formula readily obtained (including optical dispersion in crystal)
- Needs experimental validation!