Motivations	Return of experience	Use of ASM boards	Conclusion & Perspectives
00000	000000	00	00

The use of ASM board for dose control in hadrontherapy

Loïc Lestand, Gérard Montarou, Magali Magne, Daniel Lambert, Baptiste Joly, Arnaud Rozes, Franck Martin, Pierre Etienne Vert, Christophe Insa, Marc Nivoix, Paul Force

Laboratoire de Physique Corpusculaire de Clermont-Ferrand

Workshop on picosecond photon sensors for physics and medical applications.

Thursday, March 13th 2014

L.Lestand et al.

Motivations
00000

Use of ASM boards

Conclusion & Perspectives

Outline

MOTIVATIONS

RETURN OF EXPERIENCE

USE OF ASM BOARDS

CONCLUSION & PERSPECTIVES

L.Lestand et al.

2/22

Motivations	Return of experience	Use of ASM boards	Conclusion & Perspectives	
• • • • • •	000000	oo		
Scientific objective: in-vivo ion range verification				

・ロト・日本・日本・日本・日本・日本

3/22

L.Lestand et al.

Motivations	Return of experience	Use of ASM boards	Conclusion & Perspectives
●○○○○	000000	oo	
Scientific objective	e: in-vivo ion range verification		

L.Lestand et al.

Motivations	Return of experience	Use of ASM boards	Conclusion & Perspectives
●○○○○	000000	oo	
Colontific obloctiv			

Hadrontherapy: ion therapy

\Rightarrow range monitoring is a key issue of hadrontherapy treatments

	《曰》《聞》《臣》《臣》	- 2	୬ ୯ ୦
L.Lestand et al.			3/22
The use of ASM board for dose control in hadrontherapy			

Motivations	Return of experien
0●000	000000

Use of ASM boards

Conclusion & Perspectives oo

Scientific objective: in-vivo ion range verification

Range uncertainties

- \Rightarrow <5 mm uncertainties
- \Rightarrow systematic uncertainties: could be reduced as much as possible
- ⇒ random uncertainties: could not be prevented without any beam delivery monitoring

L.Lestand et al.

・ロト・西ト・ヨト・ヨー うへぐ

Motivations	Return of experience	Use of ASM boards	Conclusion & Perspectives
00000	000000	oo	oo
o ·			

Range monitoring: detection of secondary particles

- » prompt particles (mainly nuclear
 - $\gamma \rightarrow {\sf bad} \; {\sf events} \; {\scriptsize \odot}$)

L.Lestand et al.

The use of ASM board for dose control in hadrontherapy

 $\Rightarrow \beta^+ \rightarrow 2 \times 511 \text{ keV } \gamma \text{ (induced radioactivity)}$

- \gg ¹⁰C (T_{1/2}=20 s)
- \gg ¹¹C (T_{1/2}=20 min)
- ≫ ¹⁵O ($T_{1/2}$ =2 min)
- \Rightarrow prompt γ : nuclear γ (1,10 MeV)

Motivations	Return of experience	Use of ASM boards	Conclusion & Perspectives
00000	000000	oo	oo
o ·			

Range monitoring: detection of secondary particles

- \gg prompt particles (mainly nuclear
 - $\gamma \rightarrow {\sf bad} \; {\sf events} \; {\scriptsize \odot}$)

L.Lestand et al.

The use of ASM board for dose control in hadrontherapy

 $\Rightarrow \beta^+ \rightarrow 2 \times 511 \text{ keV } \gamma \text{ (induced radioactivity)}$

- \gg ¹⁰C (T_{1/2}=20 s)
- \gg ¹¹C (T_{1/2}=20 min)
- ≫ ¹⁵O ($T_{1/2}$ =2 min)

 \Rightarrow prompt γ : nuclear γ (1,10 MeV)

Motivations	Return of experience	Use of ASM boards	Conclusion & Perspectives
00000	000000	oo	

Range monitoring: detection of secondary particles

 $\gamma \rightarrow {\sf bad} \; {\sf events} \; {\scriptsize {\scriptsize {\odot}}}$)

L.Lestand et al.

The use of ASM board for dose control in hadrontherapy

 $\Rightarrow \beta^+ \rightarrow 2 \times 511 \text{ keV } \gamma \text{ (induced radioactivity)}$

- \gg ¹⁰C (T_{1/2}=20 s)
- \gg ¹¹C (T_{1/2}=20 min)
- ≫ ¹⁵O ($T_{1/2}$ =2 min)

 \Rightarrow prompt γ : nuclear γ (1,10 MeV)

5/22

Motivations 00000	Return of experience	Use of ASM boards oo	Conclusion & Perspectives
Scientific objective: in-viv	o ion range verification		

What we would like: waveform digitisation

- ⇒ Acquisitions during irradiation is very noisy: need for random coincidences rejection
- ⇒ Improve trigger selectivity: data sampling allows to reprocess and refine trigger off-line (not possible with TDC+QDC)
- ⇒ Read-out electronics should be generic for different photosensors

Motivations	Return of experience	Use of ASM boards	Conclusion & Perspectives
0000	000000	oo	
Scientific objective: in-vi	vo ion range verification		

What we have

- ⇒ Since 2002, different read-out electronics based on switched capacitor array technology have been developed at LPC for physics experiments:
 - > **ARS16 board** based on ARS0 chip ¹: 16 channels, buffer depth=128, F_{samp} =300 MHz-1 GHz, ADC(12 bits): 1 MHz
 - **ASM board** based on DRS4 chip 2 : 24 channels, buffer depth=1024, F_{samp} =500 MHz-6 GHz, ADC(12 bits): 33 MHz
- \Rightarrow 1 small solid angle detector has been developed:
 - > 2×20 channels: 1 channel = APD S 8664-55 (Hamamatsu) coupled to LYSO crystal ($5 \times 5 \times 22$ mm³)
- \Rightarrow 1 larger solid angle detector is under development:
 - \gg 2×120 channels: 1 channel = 1/2 inch head on PMT coupled to LYSO crystal (13×13×15 mm³)

 1
 (F. Feinstein, NIM A (2006), 504)

 2
 (S. Ritt, NSS Conference Record, IEEE (2008))

 LLestand et al.
 7/22

 The use of ASM board for dose control in hadrontherapy

Motivations	
00000	

Use of ASM boards

Conclusion & Perspectives

Outline

MOTIVATIONS

RETURN OF EXPERIENCE

USE OF ASM BOARDS

CONCLUSION & PERSPECTIVES

・ロト・御ト・ヨト・ヨー 今々で

L.Lestand et al.

8/22

<i>Notivations</i>	Return of experience	Use of ASM boards	Conclusion & Perspectives
00000	000000	00	00

Experiments

- ⇒ We have conducted several experiments on proton and carbon beams
- \Rightarrow GANIL³, research facility \Rightarrow **75 MeV.u**⁻¹ carbon beams
- $\Rightarrow~CPO^4$, clinical facility \Rightarrow 86 MeV proton beams
- ⇒ main problem: how to discriminate, during in-beam acquisitions, annihilation photon pairs from nuclear induced background ?
- ⇒ main hypothesis to deal with this issue: nuclear background is synchronous to the beam extraction \rightarrow synchronise DAQ to the accelerator frequency

L.Lestand et al.

³Grand Accelerateur National d'Ions Lourds

⁴Centre de ProtonTherapie d'Orsay

Motivations 00000 Return of experience

Use of ASM boards

Conclusion & Perspectives

Experiment with the APD based detector

Experiments with small solid angle detector (APD-based)

- \Rightarrow Custom made trigger boards: both heads operated in coincidence
- \Rightarrow Read-out electronics: ARS16 boards, *F*_{samp}=500 MHz
- \Rightarrow Experiments done at GANIL:
 - \gg ¹³C 75 MeV/n
 - \gg continuous extraction
 - \gg cyclotron frequency: 12 MHz \rightarrow 1 bunch every \sim 80 ns
- \Rightarrow Experiments done at CPO:
 - ≫ p 86 MeV
 - >> continuous extraction modulated: 50 ms extraction + 50 ms pause
 - \gg cyclotron frequency: 106 MHz \rightarrow 1 bunch every \sim 9 ns

L.Lestand et al.

10/22

Motivations 00000 Return of experience

Use of ASM boards

Conclusion & Perspectives

Experiment with the APD based detector

Trigger block diagram

L.Lestand et al.

11/22

2

Motivations	
00000	

Use of ASM boards

Conclusion & Perspectives

Experiment with the APD based detector

GANIL experiment results

- ⇒ GANIL experiment:
- ≫ synchr: $\Delta t_{\gamma\gamma-RF} \in [30ns; 50ns]$
- > asynchr: $\Delta t_{\gamma\gamma-RF} < 30ns; \Delta t_{\gamma\gamma-RF} > 50ns$
- \gg after irr: after irradiation
- ⇒ Nuclear induced background well synchronised to the beam extraction
- ⇒ CPO experiment:
- \Rightarrow No time correlation visible
- \Rightarrow use of faster photodetector than APD \rightarrow PMT works well
- ⇒ Need for finding another selection criterion when cyclotron frequency is too high (~ 100 MHz)

L.Lestand et al.

Motivations 00000	Return of experience	Use of ASM boards oo	Conclusion & Perspectives
Preliminary tests with PM	ſ		

Use of PMT to improve CRT

- \Rightarrow Use of PMT from an old HR⁺ PET system
- \Rightarrow Better timing resolution: 1 ns (FWHM)
 - \gg LaBr₃(5%Ce) crystal (12.7×12.7 mm³) coupled to a PMT Hamamatsu H6533 against LYSO crystal (13×13×15 mm³) coupled to a HR⁺ PMT
 - ≫ acquisitions with Lecroy[™] oscilloscope (6050 A): 500 MHz analog bandwidth, 2.5 GSPS

⇒ those PMT's seems to be good enough to build a cheap large acceptance detector dedicated to *in-vivo* particle range monitoring

L.Lestand et al.

Motivations 00000	Return of experience	Use of ASM boards oo	Conclusion & Perspectives
Design of a small demonstrator			

On-beam test with blocks of large acceptance detector

⇒ Preliminary tests with a pair of 4 channels, PMT+LYSO crystal (13×13×15 mm³) has been made at CPO facility

- ⇒ Both blocks are operated in coincidence and the 8 channels are read-out by ARS16 boards
- ⇒ Two acquisitions have been done at two different beam intensities: low intensity ($\sim 2 \ 10^7 \text{ p.s}^{-1}$) and higher intensity ($\sim 7 \ 10^8 \text{ p.s}^{-1}$)

▲□▶▲圖▶▲≧▶▲≧▶ ≧ の≪⊙

L.Lestand et al.

Motivations	Return of experience	Use of ASM boards	Conclusion & Perspectives
00000	○○○○●	oo	
Preliminary results on beam			

- $\Rightarrow~$ at higher intensity \rightarrow high dead time
- ⇒ Nevertheless, we are able to more efficiently extract annihilation photon pairs during inbeam acquisitions

- ⇒ at low intensity, annihilation photon pairs are easily detected
- ⇒ CRT = 3 ns (FWHM)
- ⇒ CRT should be better with faster sampling

L.Lestand et al.

Motivations
00000

Use of ASM boards

Conclusion & Perspectives

Outline

MOTIVATIONS

RETURN OF EXPERIENCE

USE OF ASM BOARDS

CONCLUSION & PERSPECTIVES

L.Lestand et al.

16/22

Motivations
00000

Use of ASM boards

Conclusion & Perspectives

Use of ASM boards

- ⇒ Analog Sampling Module (ASM) boards, based on DRS4 chip, have been developed at LPC (cf. talk M.Magne)
- \Rightarrow able to sample analog waveforms **up to 6 GHz**
- ⇒ well adapted to read-out **fast photodetectors** such as MCP-PMT, SiPM, dSiPM: at least 5 samples on the rising edge if rising time is ~ 1 ns
- ⇒ should **improve CRT** of our PMT-based detector
- ⇒ these boards are also able to generate a first level trigger
- ⇒ scalable system to read-out several hundreds of channels

Motivations 00000

Return of experience

Use of ASM boards

Conclusion & Perspectives

A 240 channels detector

A 240 channels detector

- \Rightarrow 2 heads: 120 channels per head
- \Rightarrow a channel: 1 PMT+1 LYSO crystal (13 \times 13 \times 15 mm^3)
- \Rightarrow intern diameter: 322 mm
- \Rightarrow axial FOV: 188.5 mm
- \Rightarrow total weight: \sim 70 kg
 - $\Rightarrow~12$ ASM boards to read out all the 240 channels
- \Rightarrow DAQ μ TCA

L.Lestand et al.

18/22

Motivations	
00000	

Use of ASM boards

Conclusion & Perspectives

Timing resolution

- \Rightarrow CRT measured :2 LYSO crystals (13×13×15 mm³) coupled to HR⁺ PMT
- \Rightarrow ASM board read-out each channel: 4.1 GSPS
- \Rightarrow Acquisitions performed via custom made C++ program (CPU VME)
- \Rightarrow CRT reached: 1.2 ns (FWHM)

▲□▶▲@▶▲≧▶▲≧▶ ≧ のQで

19/22

L.Lestand et al.

Motivations
00000

Use of ASM boards

Conclusion & Perspectives $_{\odot \odot}$

Outline

MOTIVATIONS

RETURN OF EXPERIENCE

USE OF ASM BOARDS

CONCLUSION & PERSPECTIVES

L.Lestand et al.

20/22

Motivations	Return of experience	Use of ASM boards	Conclusion & Perspectives
00000	000000	oo	●○
Conclusion			

Conclusion

- \Rightarrow We would like to **monitor ion range during treatment** by measuring induced β^+ activity
- ⇒ We need to extract annihilation photon pairs from induced nuclear background
- \Rightarrow Several experiments have been done on proton and carbon ion beams
- ⇒ We conclude that extraction of good events is possible if timing resolution is good enough comparing to the mean time between two ion bunches
- ⇒ A fast sampling read-out electronics, based on DRS4 chip, has been espacially developped for this purpose
- $\Rightarrow~$ A CRT of 1.2 ns (FWHM) has been measured which should be enough to improve good events extraction during acquisition
- ⇒ This read-out electronics is also **well adapted** to fast photodetectors

Motivations	Return of experience	Use of ASM boards	Conclusion & Perspectives
00000		oo	○●
Perspectives			

Perspectives

- \Rightarrow Next step: first in-beam test with at least 80 channels (4 ASM boards)
 - \gg GANIL: end of April
- \Rightarrow Then: *in-beam* tests with the **whole detector**: 240 channels (12 ASM boards)
 - \gg CPO: end of May
- ⇒ Work on fast photodetector (MCP-PMT, 16 anodes (R10754X-01-M16, Hamamatsu) is on progress
- \Rightarrow For now characterisation with femtosecond laser
- \Rightarrow then timing measurement with ASM board

22/22