

Lifetime of Microchannel-Plate Photomultipliers

Alexander Britting, Wolfgang Eyrich, Albert Lehmann, Fred Uhlig

supported by

Bundesministerium für Bildung und Forschung

Overview

- Motivation
- Properties of MCP-PMTs and lifetime constraints
- Setup of lifetime measurements under PANDA conditions
- Results of the latest measurements for various devices concerning:
 - Darkcount rate
 - Gain
 - Quantum Efficiency measurements
 - QE surface scan
- Comparison with previous measurements
- Summary and outlook

The PANDA-Detector

Photosensor requirements

	PMTs	MCP-PMTs	SiPMs
Magnetic field resistance up to 2T (Disc DIRC)	X		\checkmark
Gain > 5*10⁵ (s.p.e.)			\checkmark
Time resolution: $\sigma < 100$ ps	X		\sim
Spatial resolution			\checkmark
High geometrical efficiency			\checkmark
High photon rates 200kHz/cm² (Barrel), >200 kHz/cm² (Disc)			\checkmark
Radiation hardness			Х
Darkcount rate			Х
Lifetime: >5C/cm ² for 10 year PANDA operation (50% duty, Gain = 10^6) at high luminosity ($2*10^{32}$ cm ⁻² s ⁻¹)		·?·'	?

Lifetime of standard MCP-PMTs

- QE @ 400nm drops to 50% of starting value within 50 – 200mC/cm²
- Corresponding PANDA-Barrel time ≤ 0,4 years
- Lifetime of standard MCP-PMTs is not sufficient for usage under PANDA conditions!
- No other models available
 ~3 4 years ago

o a n)d a

Aging of photo cathode

- Photocathode of older MCPs are more damaged due to impact of havier ions:
 - Chemical reactions, Adsorption
 - Cluster/lattice/surface defects
- Reduce flux of (heavy) ions
- Make cathode more "robust"

Methods to increase lifetime

- Improved vacuum (PHOTONIS, BINP #1359, #3548)
- New photo cathode, Cs/Sb -vapor (BINP #1359, #3548)
 → Problem: higher darkcount rate
- Protection layer:
 - In front of first MCP layer (old Ham. MCP-PMTs, BINP #82)
 → Problem: reduction of collection efficiency
 - Between MCP layers

(Ham. R10754X-01-M16)

- Ceramic sealing between MCPs and metal walls (Ham. R10754X-01-M16)
- Treatment of MCP surfaces:
 - Electron scrubbing (PHOTONIS, BINP #1359, #3548)
 - <u>Atomic layer deposition</u> (PHOT. XP85112/A1-HGL, XP85112/A1-D, Ham. R10754X-07-M16M)

Setup

Lifetime measurement procedure

 Constant illumination of all MCPs within same lightspot
 → permanent monitoring to

calculate collected anode charge

- Every few days: Measurement of Gain, darkcount and QE
- QE is measured seperatly using a Xenon arc lamp with monochromator ($\Delta\lambda = 1$ nm)
- QE surface scans are done every 2-4 months with PiLas (372nm, Ø ~1mm)
- <u>Simultanous measurements of</u> <u>several different MCP-PMTs</u> <u>under same conditions as the</u> <u>PANDA-DIRCs</u>

Overview of latest MCP-PMTs

	BINP	PHOTONIS	Hamamatsu	Hamamatsu
	1359 / 3548	XP85112/A1-HGL 1223 / 1332	R10754X-01-M16 JT0117	R10754X-01-M16M KT0001 / KT0002
Pore size (µm)	7	10	10	10
Number of pixels	1	8x8	4x4	4x4
Active area (mm²)	9²π	53x53	22x22	22x22
Geom. Efficiency (%)	36	81	61	61
Photo cathode	Multi-alkali	Bi-alkali	Multi-alkali	Multi-alkali
Peak Q.E.	495	390	375	375
comments	$Na_2 KSb(Cs) + Cs_3 Sb$	ALD	Prot. layer between 1. and 2. MCP	ALD

59 mm

BINP 1359/3548

PHOTONIS XP85112/A1-HGL

Hamamatsu R10754X-01-M16

Quantum Efficiency of various MCP-PMTs

Illumination overview

	BINP 1359/3548	PHOTONIS XP85112/A1-HGL 1223 / 1332	Hamamatsu R10754X-01-M16 JT0117	Hamamatsu R10754X-07-M16M KT0001 / KT0002
Int. Collect. Charge (Feb. 25 th) [mC/cm ²]	3060 / 5195	6240 / 2915	2085	1225 / 490
Max applied current per anode [nA]	315 / 346	56 / 59	45.3	71.4 / 40.3
Specified max. DC anode cur. [nA]	1000	47 (64 Chans.) 94 (32 Chans.)	100	100
Max Diff. Charge [mC/cm²/d]	10.7 / 11.7	13.5 / 13.6	14.1	19.3 / 10.9
Number of QE-Scans	8 / 9	13 / 5	7	3/3
Anode area per pixel (cm²)	2.54	0.36	0.32	0.32
Measured Channels	1	8 + 2 (unexposed) + MCP-Out	8	4
Illuminated area	100%	50%	100%	100%
Applied voltage (V) using voltage divider	3100 (+100)	2050 / 2000 2100 / 2050 illum.	3300	2400 / 2600

Gain

Gain

A. Britting – workshop on picosecond photon sensors 2014

A. Britting – workshop on picosecond photon sensors 2014

QE surface scan

- Laser spot size: ~1mm, 372nm
- Aging starts at corners (M16) or rim (BINP 3548)

QE surface scan (2)

Comparison with older MCP-PMTs

No degradation for XP85112/A1-HGL – 1223, until 12 PANDA Barrel-Years. Decline recently started.

panda

- XP85112/A1-D 9001332 has already passed 6 PANDA Barrel-Years!
- More data for Ham.
 ALD coated MCP PMTs needed!
- Performance of BINP 3548 is still good
- ALD is most promising technique

Summary and Outlook

- Requirements: <u>5C/cm²</u> (50% duty, 10 years), Disc-DIRC even more
- Results of lifetime measurements:
 - XP85112/A1-HGL 1223 has passed ~6.2C/cm² (~12.5 PANDA Barrel-years), aging has started just recently at ~6.0C/cm² → currently checked with another device (1332)
 - More data for Ham. R10754-07-M16M needed, but promissing so far
 - All other devices show more significant aging effects
 - Surface scans reveal faster aging areas:
 - Aging of R10754X-01-M16 and BINPs starts from the corners/edges
 - R10754X-07-M16M needs more data
 - XP85112/A1-HGL 1223 aging has started at upper rim
- Lifetime of MCP-PMTs has substantially increased (~50 100):
 - **ALD** is most promising technique
 - Maybe even better: ALD + new cathode?
 - XP85112/A1-HGL seems to be usable for PANDA Barrel-DIRC

Requirements for PANDA Barrel-DIRC

Assumptions:

- PANDA high luminosity mode: $2*10^{32}$ cm⁻² s⁻¹
 - \rightarrow p-pbar reaction rate: 20MHz
- QE of XP85112
- 1 year of 100% duty cycle!

results:

- Int. Charge is radial dependent
 - $\frac{1}{cm^2 * a}$ at focal plane
- cm² * a
 Assuming 50% duty cycle and 10 years operation time
 - → **5C/cm² needed!**

a día a

Magnetic field performance

- Lamor radi of electrons determine maximum magnetic field \rightarrow 10 μm or less required for 2T
- Gain decreases drastically, if B-field is parallel to chevron angle
- Gain drops for larger tilt angle

Illumination setup

- LED-Lightspot is expanded on all MCPs
- Trigger rate: 272kHz 1MHz
- Scaler: event reduction for monitoring
- TDC used for crosstalk and pedestal supression
- Stability of LED is measured with photodiode

p a n d a

After pulse

- Goal: Determine mass/kind of backscattered ions and estimate their amount
- Absolute time can be calculated by time difference of prim. and after pulse
- Classical aproach for estimating m/q

Microchannel-Plate PMTs

- Typical pore sizes: 6 25μm
- Very fast signals:
 - Rise time: 0.5 1.5ns
 - TTS < 50ps
- Gain > 10^6 with 2 MCP stages
- Low dark count rate
- Usable in B-fields of up to 2T

 → Standard PMTs not usable in

 PANDA
- Problems:
 - Price
 - <u>Aging → QE drops!</u>