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What is Mordicus-hw?

Mordicus-hw is a C++ framework designed to optimize
collaborative development between electronics and software
engineers by providing them software tools that are adapted
to their respective activities.
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Highly Distributed Application
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Client-Server over ICE

Implemented
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Electronics Control & Configuration
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Electronics Control & Config

Mordicus-HW
— Policy-based register access (C++ templates)
— Dynamic Remote Registers (CConfig framework)

Node Device
ECL *; (network) *9 (Mem, ASIC...)

% %
——>  Register ——>  Bit Field

ICE Interface & data definitions
Embedded C++ library (VxWorks & Linux)
Host C++ library (Linux, MacOS)

»
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Register Access Policies

Every device is associated to a “register access policy” representing the
protocol through which hardware registers are read from or written to.

The framework architecture confines the specification of the register access
policy to a single Policy class that basically implements the 4 elements:
* the type that represents a register reference: policy: : AddrType;
* the data type that is read from / written to the register: policy: :DataType;
e the register write function: void Policy:: poke (const AddrType& addr,
const DataType& value),
* theregister read function: void Policy::peek(const AddrTypes& addr,
DataType& value),

March 13, 2014 G. Stelmakh - Mordicus-hw



Scripting tools for electronics design

Based on the described architecture, we can develop
powerful clients running on general-purpose workstations
capable with dynamic description of target hardware devices
and then running any sequence of register accesses in the form

of scripts.

Once firmware reaches a sufficient level of maturity, the
scripts themselves can be either directly reused or ported to the

final system.
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Optimization Issues

Bit-field access optimization was actually implemented in Mordicus-hw
resulting in significant acceleration of control sequences.

The caching mechanism uses C++ transient objects which accomplish
the single register read in their constructor and the final write-back in their
destructor, doing all the bit-field access operations in the form of chained
method calls such as (bit-fields are referenced here as strings):

myReg.poke ("ctrl", 2) .poke("status",11) .poke ("cs",1);

In this example, myReg is a register object and the first call to the poke ()

method returns the transient object on which, from then on, the subsequent
poke () calls are made.
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Configuration Framework

<€

>
Config ID

Confi — C++ framework (Std & embedded OS)
ontig — XML File & Database persistence

get:rc:ConfigManager

— Graphical Editor (based on Qt4)
— Parameter default value mechanism
Datalbasa@ - Multilanguage server access (using ICE)
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Configuration editor

D w B
hardwareDescription_fullCoBoStandAlone.xml

Name Value Unit Range

v Setup[Hardware]
» Device[*]
> Device[debug]
> Device[zeroSuppress]
» Device[ctrl]
v Device[aget]
registerAccess AGelLBus
registerwidth 8 bytes
baseAddress 0x20000000
> Register[reg0]
> Register[reg1]
> Register[reg2]
¥ Register[reg3]
offset

> BitField[select_c22_32]
r RitEisldlcalart rFnn?l

Configuration Framework

BL

Configuration editor

D w B
hardwareDescription_fullCoBoStandAlone.xml | pedestals.xcfg

Name Value Unikt Range

v setup[Conditions]

= ECC
» CoBo[*]
¥ CoBo[0]
IP 132.166.39.121
isActive true
* Module
» CircularBuffer
v AsAd[0]
» Control
» Clocking
= ADC
= Generator
» InspectionLines

» Monitoring
v Anetln]

#include "CCfg/CConfig.h"
#include "CCfg/Document.h"

Ccfg: :Document doc("hardware descr.xcfg");
CCfg: :CConfig cfg(doc.getConfig()) ;

CCfg: :CConfig agetCfg = cfg("Setup", "Hardware") ('"Device", "aget") ;
int offset = agetCfg ("Register",'"reg3") ("offset");;

1 bits [1, 64]

Setup[Hardware].Device[asad].Register[resetFast].offset
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Further developments

* “Batch” objects

Series of remote register access instructions than would be transported in
a single network operation to their target node and then locally interpreted and
executed.

* Advanced device parameterization
The possibility to instantiate register devices of any kind with an arbitrary
number of parameters.

* Parameters in more than 64-bit values.
The possibility to transfer in a single network operation the whole configDB.
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