Mordicus-hw

Framework for backend electronics control and
configuration

G. Stelmakh

CEA Irfu Saclay

Workshop on picosecond photon sensors
March 2014

What is Mordicus-hw?

Mordicus-hw is a C++ framework designed to optimize
collaborative development between electronics and software
engineers by providing them software tools that are adapted
to their respective activities.

March 13, 2014 G. Stelmakh - Mordicus-hw

Device Server

device #1
Network device #2
e =
ICE

device #3

Middleware

device #4

D—

Memory-mapped register access

12C register access

Proprietary register access

March 13, 2014 G. Stelmakh - Mordicus-hw

Highly Distributed Application

March 13, 2014 G. Stelmakh - Mordicus-hw 4

Client-Server over ICE

Implemented

March 13, 2014 G. Stelmakh - Mordicus-hw

Electronics Control & Configuration

Communication
middleware (ICE)

=[
M { — Policy-based register access

— Dynamic Remote Registers

Network

Communication middleware
(1CE)

March 13, 2014 G. Stelmakh - Mordicus-hw

Electronics Control & Config

Mordicus-HW
— Policy-based register access (C++ templates)
— Dynamic Remote Registers (CConfig framework)

Node Device
ECL *; (network) *9 (Mem, ASIC...)

% %
——> Register ——> Bit Field

ICE Interface & data definitions
Embedded C++ library (VxWorks & Linux)
Host C++ library (Linux, MacOS)

»

March 13, 2014 G. Stelmakh - Mordicus-hw

Register Access Policies

Every device is associated to a “register access policy” representing the
protocol through which hardware registers are read from or written to.

The framework architecture confines the specification of the register access
policy to a single Policy class that basically implements the 4 elements:
* the type that represents a register reference: policy: : AddrType;
* the data type that is read from / written to the register: policy: :DataType;
e the register write function: void Policy:: poke (const AddrType& addr,
const DataType& value),
* theregister read function: void Policy::peek(const AddrTypes& addr,
DataType& value),

March 13, 2014 G. Stelmakh - Mordicus-hw

Scripting tools for electronics design

Based on the described architecture, we can develop
powerful clients running on general-purpose workstations
capable with dynamic description of target hardware devices
and then running any sequence of register accesses in the form

of scripts.

Once firmware reaches a sufficient level of maturity, the
scripts themselves can be either directly reused or ported to the

final system.

March 13, 2014 G. Stelmakh - Mordicus-hw

Optimization Issues

Bit-field access optimization was actually implemented in Mordicus-hw
resulting in significant acceleration of control sequences.

The caching mechanism uses C++ transient objects which accomplish
the single register read in their constructor and the final write-back in their
destructor, doing all the bit-field access operations in the form of chained
method calls such as (bit-fields are referenced here as strings):

myReg.poke ("ctrl", 2) .poke("status",11) .poke ("cs",1);

In this example, myReg is a register object and the first call to the poke ()

method returns the transient object on which, from then on, the subsequent
poke () calls are made.

March 13, 2014 G. Stelmakh - Mordicus-hw

Configuration Framework

<€

>
Config ID

Confi — C++ framework (Std & embedded OS)
ontig — XML File & Database persistence

get:rc:ConfigManager

— Graphical Editor (based on Qt4)
— Parameter default value mechanism
Datalbasa@ - Multilanguage server access (using ICE)

March 13, 2014 G. Stelmakh - Mordicus-hw

Configuration editor

D w B
hardwareDescription_fullCoBoStandAlone.xml

Name Value Unit Range

v Setup[Hardware]
» Device[*]
> Device[debug]
> Device[zeroSuppress]
» Device[ctrl]
v Device[aget]
registerAccess AGelLBus
registerwidth 8 bytes
baseAddress 0x20000000
> Register[reg0]
> Register[reg1]
> Register[reg2]
¥ Register[reg3]
offset

> BitField[select_c22_32]
r RitEisldlcalart rFnn?l

Configuration Framework

BL

Configuration editor

D w B
hardwareDescription_fullCoBoStandAlone.xml | pedestals.xcfg

Name Value Unikt Range

v setup[Conditions]

= ECC
» CoBo[*]
¥ CoBo[0]
IP 132.166.39.121
isActive true
* Module
» CircularBuffer
v AsAd[0]
» Control
» Clocking
= ADC
= Generator
» InspectionLines

» Monitoring
v Anetln]

#include "CCfg/CConfig.h"
#include "CCfg/Document.h"

Ccfg: :Document doc("hardware descr.xcfg");
CCfg: :CConfig cfg(doc.getConfig()) ;

CCfg: :CConfig agetCfg = cfg("Setup", "Hardware") ('"Device", "aget") ;
int offset = agetCfg ("Register",'"reg3") ("offset");;

1 bits [1, 64]

Setup[Hardware].Device[asad].Register[resetFast].offset

March 13, 2014

GlobalThresholdV... B [0,7]

Setup[Conditions]

G. Stelmakh - Mordicus-hw 12

Further developments

* “Batch” objects

Series of remote register access instructions than would be transported in
a single network operation to their target node and then locally interpreted and
executed.

* Advanced device parameterization
The possibility to instantiate register devices of any kind with an arbitrary
number of parameters.

* Parameters in more than 64-bit values.
The possibility to transfer in a single network operation the whole configDB.

March 13, 2014 G. Stelmakh - Mordicus-hw

