
Mordicus-hw
Framework for backend electronics control and

configuration

G. Stelmakh

CEA Irfu Saclay

 Mordicus-hw is a C++ framework designed to optimize
collaborative development between electronics and software
engineers by providing them software tools that are adapted
to their respective activities.

What is Mordicus-hw?

March 13, 2014 G. Stelmakh - Mordicus-hw 2

Workstation

Client

Embedded platform

Device
Server

MBus

I2C

AGET

device #1

device #2

device #3

device #4

ICE
Middleware

Network
TCP/IT

MBus

I2C

AGET

Memory-mapped register access

I2C register access

Proprietary register access

Device Server

March 13, 2014 G. Stelmakh - Mordicus-hw 3

March 13, 2014 G. Stelmakh - Mordicus-hw 4

Highly Distributed Application

Client Server

Contract:
Interface
Defintion

Code:
Client

Language

Code:
Server

Language

Code:
Server

Implementation

Generated

Implemented

March 13, 2014 G. Stelmakh - Mordicus-hw 5

Client-Server over ICE

Network

Embedded Embedded

Mordicus-hw Framework
– Policy-based register access
– Dynamic Remote Registers

Communication
middleware (ICE)

Communication middleware
(ICE)

March 13, 2014 G. Stelmakh - Mordicus-hw 6

Electronics Control & Configuration

Mordicus-HW
– Policy-based register access
– Dynamic Remote Registers

ICE Interface & data definitions
Embedded C++ library (VxWorks & Linux)
Host C++ library (Linux, MacOS)

Node
(network)

Device
(Mem, ASIC…)

*
ECC

*

Register * Bit Field *

(C++ templates)
(CConfig framework)

Optimal collaborative work between
electronics and software engineers

March 13, 2014 G. Stelmakh - Mordicus-hw 7

Electronics Control & Config

 Every device is associated to a “register access policy” representing the
protocol through which hardware registers are read from or written to.

 The framework architecture confines the specification of the register access
policy to a single Policy class that basically implements the 4 elements:
• the type that represents a register reference: Policy::AddrType;
• the data type that is read from / written to the register: Policy::DataType;
• the register write function: void Policy:: poke(const AddrType& addr,

const DataType& value);
• the register read function: void Policy::peek(const AddrType& addr,

DataType& value);

March 13, 2014 G. Stelmakh - Mordicus-hw 8

Register Access Policies

 Based on the described architecture, we can develop
powerful clients running on general-purpose workstations
capable with dynamic description of target hardware devices
and then running any sequence of register accesses in the form
of scripts.

 Once firmware reaches a sufficient level of maturity, the
scripts themselves can be either directly reused or ported to the
final system.

March 13, 2014 G. Stelmakh - Mordicus-hw 9

Scripting tools for electronics design

 Bit-field access optimization was actually implemented in Mordicus-hw
resulting in significant acceleration of control sequences.

 The caching mechanism uses C++ transient objects which accomplish
the single register read in their constructor and the final write-back in their
destructor, doing all the bit-field access operations in the form of chained
method calls such as (bit-fields are referenced here as strings):

 myReg.poke("ctrl",2).poke("status",11).poke("cs",1);

 In this example, myReg is a register object and the first call to the poke()
method returns the transient object on which, from then on, the subsequent
 poke() calls are made.

March 13, 2014 G. Stelmakh - Mordicus-hw 10

Optimization Issues

Configuration Framework

Config ID

Config
store

– C++ framework (Std & embedded OS)
– XML File & Database persistence

– Graphical Editor (based on Qt4)
– Parameter default value mechanism
– Multilanguage server access (using ICE)
 …

March 13, 2014 G. Stelmakh - Mordicus-hw 11

Default value

Overriden value

#include "CCfg/CConfig.h"

#include "CCfg/Document.h"

Ccfg::Document doc("hardware_descr.xcfg");

CCfg::CConfig cfg(doc.getConfig());

CCfg::CConfig agetCfg = cfg("Setup","Hardware")("Device","aget");

int offset = agetCfg ("Register","reg3")("offset");;

March 13, 2014 G. Stelmakh - Mordicus-hw 12

Configuration Framework

• “Batch” objects
 Series of remote register access instructions than would be transported in
a single network operation to their target node and then locally interpreted and
executed.

• Advanced device parameterization
 The possibility to instantiate register devices of any kind with an arbitrary
number of parameters.

• Parameters in more than 64-bit values.
 The possibility to transfer in a single network operation the whole configDB.

March 13, 2014 G. Stelmakh - Mordicus-hw 13

Further developments

