

AFP Technical Review ToF Electronics

Michael Rijssenbeek for the AFP QToF Institutes: U Texas at Arlington, Stony Brook U, U Alberta at Edmonton U New Mexico, Oklahoma SU

14MAR14

Electronics – Goals & Constraints

- preserve timing resolution of the detector: <20 ps/channel
 - multiple measurements/proton → <10 ps/proton</p>
 - need multiplicity also for rejection of spurious background rejection!
 - trade multiplicity for resolution: 4 measurements of 20 ps \approx 10 ps
- provide fast ξ -bin trigger; transverse deflection $x \propto \xi$
 - data rate up to 1 MHz/channel
- radiation-hardness or tolerance
 - fluence/dose estimate for 100 fb⁻¹ (1 yr @ 10^{34} cm⁻²s⁻¹)

estimates for 100 fb ⁻¹	5 cm from beam @214 m	Tunnel floor @214 m	RR13 @beam level
Electronics exposed:	PA-a	PA-b, Trigger	CFD, HPTDC, Clock
High-Energy hadrons	5·10 ¹² /cm ²	10 ¹⁰ /cm ²	5·10 ⁹ –10 ⁸ /cm ²
1 MeV-equiv. neutrons	5·10 ¹¹ /cm ²	5·10 ¹⁰ /cm ²	10 ⁹ /cm ²
Integrated dose	5000 Gy	50 – 10 Gy	1 – 0.1 Gy

(1 Gy = 100 rad)

Fast Timing Electronics

Two methods to deal with pulse-height variations:

- 1. CFD + TDC ...
- 2. Sampling of the (leading edge of the) pulse and time-walk correction
- see slides by J-F Genat, and many others at this workshop!

- AFP Baseline: CFD + HPTDC
 - see Jim Pinfold 's talk
- AFP Electronics R&D: SAMPIC

Pulse Shape and Gain Requirements

- Pulse shape from UTA Laser-Lab testing (25µm pore) :
- Gaussian, FWHM ~700 ps (t_{rise} ~300 ps)
- Minimum pulse height at 2 pe, G=1E5: V_{peak} ~2 mV (~30 fC in 50 Ω)

```
Trigger: needs ~100 fC
```

- CFD needs: 250 1500 mV
- 2 mV → 200 mV: 40 dB
- PMT pixel variation: ~6 dB
- PMT ageing: ~6 dB
- ➢Need ~50 dB gain

- 2 or 4 (inverting) stages of ~20 dB each

Irradiation of AFP Electronics

- 1. HiRad protocol:
 - Neutrons or HE protons: $10^{12} 10^{13}$ /cm²; γ : 1 10 kGy.
- 2. MedRad protocol:
 - Neutrons or HE protons: $10^{11} 10^{12}$ /cm²; γ : 10 1 kGy.
- PA-a chips (PSA4-5043+): HiRad
- PA-b boards & trigger: MedRad
- NINO chips (trigger): MedRad
- CFD daughter boards: MedRad
- HPTDC chips: MedRad

Cfr. ALFA radiation dose LHC Run1 measured over 2010–2013 (~30 fb⁻¹): ~20-30 Gy in each pot (\geq 10 cm from beam) See: K.Hiller, S.Jakobsen, S.Franz, ALFA General Meeting, Cracow, June 5-7, 201.

Irradiation – Sep 2013

Irradiated at LANL Sept 2013; S. Seidel et al. (UNM), K. Gray (UTA):

800 MeV p, ~7 cm from direct beam; *passive*

- dose: 6.5-8.7×10¹² p/cm², 2.3-3.1 kGy
- for 100 fb⁻¹: ~expected for PA-a; ~50× expected for PA-b and CFD
- devices are all operational after irradiation!

4-Channel Electronics Setup

- Jan 31- Feb 2 irradiation at LANSCE
- Protocol:
 - Active irradiation
 - up to 1.0×10^{13} p/cm², in 10 steps of 1×10^{12} p/cm²
 - i.e. 10 pulses of 10¹¹ protons per step

January 31- Feb 2 Irradiation

People: Tim Hoffman (UTA); Sally Seidel, Martin Hoeferkamp (UNM)

Protocol: Active irradiation – keep voltages on!

- up to 1.0×10¹³ p/cm², in 10 'steps' of 1×10¹² p/cm²; verify operation before & after each step.
- i.e. 1 'step' equals ~10 pulses of 10^{11} protons/pulse, 1 Hz, ~1 cm Ø

Early results:

- HPTDC readout did not work (cable too short) → 2 Channels were monitored on scope; all 4 channels were powered throughout the run.
- Irradiation up to 5.0×10¹³ p/cm²
- 2 monitored channels were still operating at the end of the run

Next:

- Wait for cool-off and return of parts (<2 months)
- Pre-Amps, CFDs: Re-test performance and compare with non-irradiated parts
- HPTDC chips: mount on HPTDC board and check operation

Fast ToF Electronics: we have ...

Proven designs & prototype 8-ch modules for:

- Preamp on PMT (PA-a) (4×8 channels)
- 2nd stage variable-gain amp on tunnel floor (PA-b) (2×8 channels)
- Constant Fraction Discriminator (CFD) (3×8 channels)
- High-Precision Time to Digital Converter (HPTDC) (3 12-ch modules)

8-Channel Preamplifier (PA-a) Have design for:

Alberta CFD Daughter Board

Alberta HPTDC Board

- Trigger pick-off and Multiplicity Trigger board (based on NINO chip)

AFP – ToF Electronics

Preamp/amp reflections

20 ns/div; need to reduce "ringing", tail, and reflection @ 20 ns

Reflection:

Understood:
caused by
mismatch of
PA-b traces ...

Re-do PA-b PCB

1 ns ringing:

 unclear, not seen with test pulses …

– PMT?

14MAR14

To Do: Trigger – Stony Brook

on PA-b motherboard; uses signal pick-offs from PA-b

to be simulated with final layout and prototyped
Output driver: to be designed ...

Trigger Schematic

Status Fast ToF Electronics: To Do ...

- Fast, ultra-stable, long-distance reference clock (U Texas at Arlington)
 - prototype working: ~5 ps jitter
 - Clock fanout: to be designed & built: (U New Mexico)
- Trigger (Stony Brook):
 - build prototype (Design almost complete)
 - Radiation testing
 - AFP trigger interface with CTF
- Modification of CFD (Alberta):
 - add Time-over-Threshold functionality (Design almost complete)
 - build prototype
- Modification of HPTDC (Alberta):
 - Rad-tolerant design
 - add ToT functionality (Design almost complete)
 - build prototype
 - Radiation testing
- Readout:
 - Opto board (2 pc ordered)
 - RCE Interface (SLAC/SBU) used for IBL tests
- DCS (?)