

A Long Term Study of Charge Multiplication

C. Betancourt¹, M. Hauser¹, K. Jakobs¹, S. Kühn¹, K. Lohwasser², R. Mori¹, U. Parzefall¹, M. Thomas¹

¹Physikalisches Institut, Albert-Ludwigs Universität Freiburg, Germany ²Now at DESY Zeuthen, Germany

Introduction

Albert-Ludwigs-Universität Freiburg

- Charge Multiplication (CM) observed on variety of sensors: signal larger than expected from conventional Silicon detector wisdom
- Typical conditions:
 - very high bias voltages (high field)
 - heavily irradiated
 - run at -20° C or lower
 - tests done in short bursts
- CM could give extra signal after years of HL-LHC, increase S/N ratio
- HL-LHC conditions would mean long fills with HV and cooling turned on
- Want to test if CM is long term stable effect
- Initial results (S. Wonsak et all) indicate potential signal drop with time

Signal in 3D ministrip sensors with CM,

M. Köhler et al, NIM A659 (2011) 272-281

Test Equipment

- Sensors: Dedicated RD50 Micron production of ptype mini sensors, various parameters to enhance CM
 - different width/pitch ratios and implantation energies
 - "different thickness" turned out a false promise
 - Results of these sensors presented by several groups, also Chris Betancourt at 23rd RD50 Meeting
- LGAD sensors (discussed in this session)
- Charge collection measurements done with ALIBAVA system and Sr90-source
 - Liquid N_2 cooling system to reach -50° C or below if needed

Test Setup & Strategy

- Concentrate on sensors that (might) show CM
 High signal after heavy irradiation
- Install in Alibava, keep bias and cooling on for days or weeks
 - Measure signal in regular intervals
- Tests block crucial set-up for months
- Potential risks in extreme HV and long term operation
- Four detectors destroyed in such tests before 1st long term test ran successfully
 - during ramp-up: low HV wire bonds causing spark(1), spark with unclear cause (1)
 - breakdown after few days of normal operation (2)

Results on CM Sensor

Albert-Ludwigs-Universität Freiburg

- Detector 2488-7-1-18H
 - CM visible
 - low W/P ratio (10µm/100µm),
 - 5x10¹⁵Neq
- Tested for ≈4 weeks
- Bias 1300V, -40° C
- Signal initial high signal decreases with time
- Lines indicate 24h breaks where no bias was applied
- Initial HV pause restored some of the signal, but only temporarily
- 2nd HV pause did have no visible effect

Results for non-CM Sensor

Albert-Ludwigs-Universität Freiburg

- Detector 2912-3-1-14H
 - no CM visible
 - normal W/P ratio ratio (25µm/80µm), ,
 - 5x10¹⁵Neq
- Tested for ≈3 weeks
- Bias 1300V, -40° C
- Initial 2 measurements during rampup included (800V, 1000V)
- Initial signal decreases with time, even for sensor without apparent CM
 - Line indicates 24h break
- Does the ongoing HV "stress" the sensor?
- Does the presence of a 37MBq ⁹⁰Sr source change the field via surface charges (CMS suggestion)?

Results of Unirradiated Sensor

Albert-Ludwigs-Universität Freiburg

- Look for surface effects
- Detector 2912-3-8-LT
 - Unirradiated
 - Test at 21° C
 - Source always present
- Test ≈2 weeks but with bias off in between signal measurements
- Scan HV bias in signal measurement
- Signal unchanged

2

LGAD Results

Albert-Ludwigs-Universität Freiburg

- Similar long term test on unirradiated LGAD
 - courtesy of CNM, V. Grecco, G. Pellegrini et al
 - place LGAD in front of source
- Measure signal for increasing bias
- No sign of charge multiplication
- Test ≈1 week with bias on
 - run at 300V and -17 $^{\circ}$ C
- Bias ramp-up and down shown also in signal measurement
- Signal unchanged

Discussion

- Long term operation at HL-LHC conditions (HV, cold, dry) reduces charge seen in irradiated sensors
- Effect exists for sensors with and without charge multiplication
- LT operation of unirradiated sensor at low bias stable
- Possible causes
 - CM could simply be an instable effect
 - HV stress (*Potential Induced Damage* PID known from solar cells), this should be reversible damage
 - CMS sees similar effect but mostly for unirradiated sensors.
 Presence of source could generate oxide charges (see Robert Klanner's presentation at TIPP last week, also shown yesterday by Thomas Poehlsen)

Conclusion

- Long term evolution of highly-irradiated charge multiplication sensors studied at high bias
- Tests are risky and time-consuming
- Signal degrades with time, even without CM
- Several explanations exist

- Next steps
 - Re-analyse to look for increased charge sharing (as seen by CMS)
 - More measurements on other sensors foreseen when cold ⁹⁰Sr set-up is free

BACKUP ONLY

- Detector 2912-3-1-14H
- Excluding measurements at below -50C
- Gets rid of outliers

2

From LHC to High Luminosity-LHC

and techn. Coord. Dec 2013) LHC Schedule (CERN management, spokespersons