
A method to model the accumulation of / oxide charge with fluence in an irradiated MSSD

24th RD50 Workshop, 11-13 June 2014

T. Peltola¹⁾, J. Härkönen¹⁾, T. Mäenpää¹⁾

¹⁾Helsinki Institute of Physics, CMS Upgrade Project.

Outline

□ Motivation & method to determine CCE(x)

- Motivation: why non-uniform 3-level defect model?
- CCE(x): Iteration method
- CCE(x): proton model vs non-unif. 3-I model

\Box Q_f(Φ) & c(Φ) modelling

- Measured CCE(x) vs simulation:
 - \circ d & η varied
 - d = constant
- Q_f(Φ) & c(Φ) of region 5 200P MSSD

Motivation & method to determine CCE(x)

Non-unif. 3-level defect model: Motivation

200P, Np=5e15 cm-3 @ T=253 K, Qf=5e11 cm-2

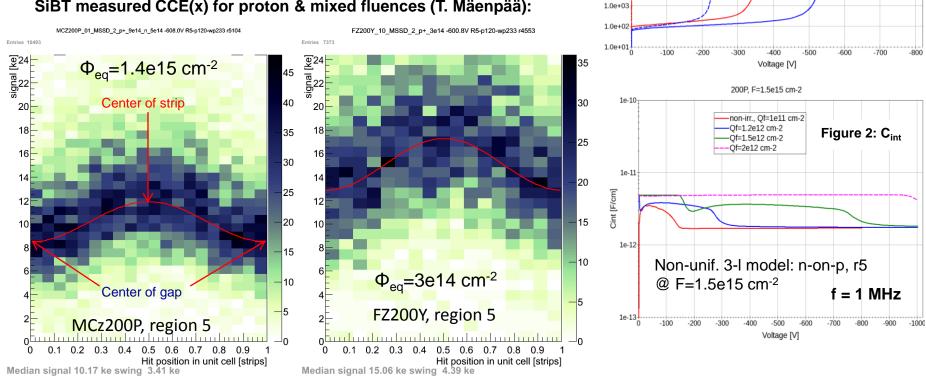
Figure 1: R_{int}

2um. 3-level: F=1e14 cm-2 2um, 3-level: F=5e14 cm-2

proton model: F=1e14 cm-2 proton model: F=5e14 cm-2

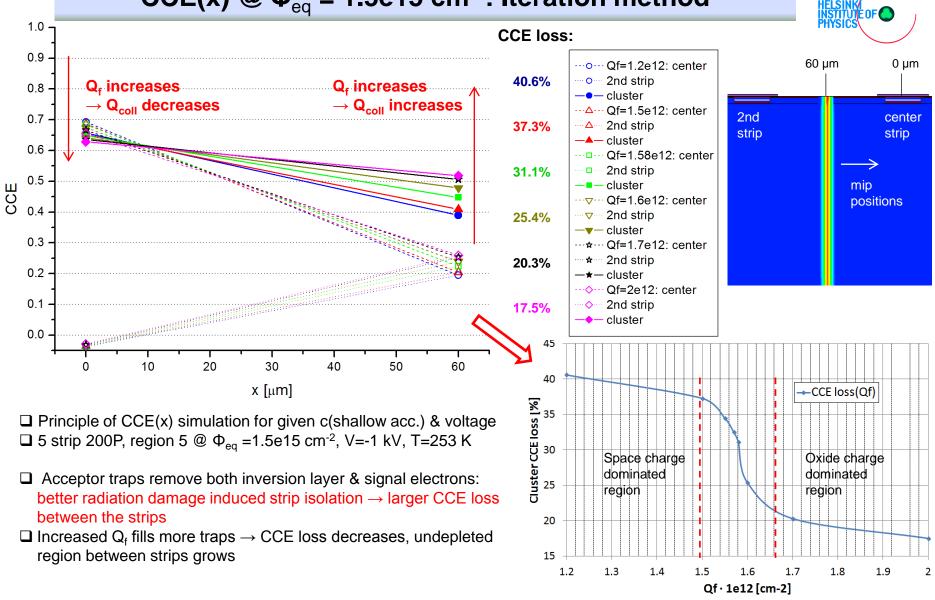
1.0e+11

1.0e+10

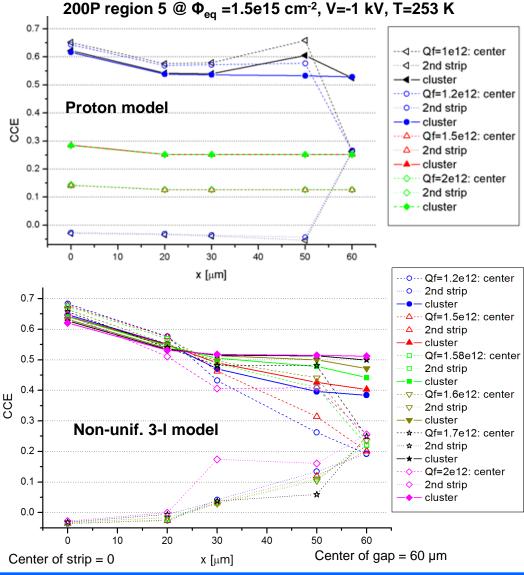

1.0e+09-

1.0e+08 도 ^{1.0e+07}

<u>ප්</u> 1.0e+06 Rint 1.0e+05 1.0e+04


 \Box 3-level model within 2 µm of device surface + proton model in the bulk: R_{int} (fig. 1) & C_{int} (fig. 2) in line with measurement also at high fluence & Q_f

 \Box Non-unif. 3-I model can be tuned to equal bulk properties (TCT, V_{fd} & I_{leak}) with proton model \rightarrow suitable tool to investigate CCE(x)


SiBT measured CCE(x) for proton & mixed fluences (T. Mäenpää):

CCE(x) @ Φ_{eq} = 1.5e15 cm⁻²: Iteration method

CCE(x): proton model vs non-unif. 3-I model

Proton model (tuned by R. Eber)

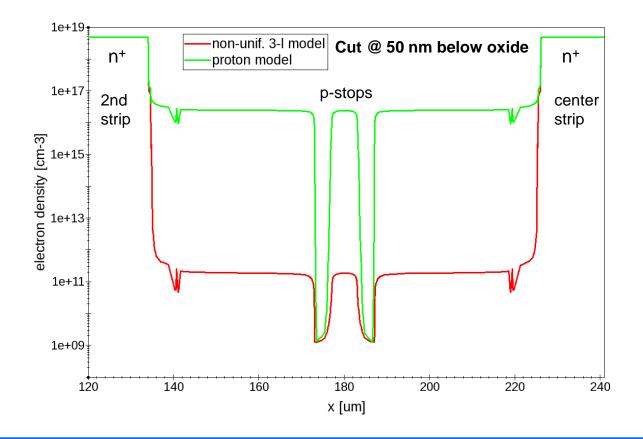
Type of	Level	$\sigma_{ m e}$	$\sigma_{ m h}$	Concentration
defect	[eV]	[cm ²]	[cm ²]	[cm ⁻³]
Deep acc.	E _C - 0.525	1e-14	1e-14	1.189* Φ + 6.454e1 3
Deep donor	E_{V} + 0.48	1e-14	1e-14	5.598*Ф - 3.959e14

Q_f = 1.2e12 cm⁻²: CCE loss ≈ 15 %
 Q_f ~ 1.5e12 cm⁻²: no strip isolation & cluster CCE ~0.5 of expected due to undepleted region produced by high Q_f

3-level model within 2 μm of device surface

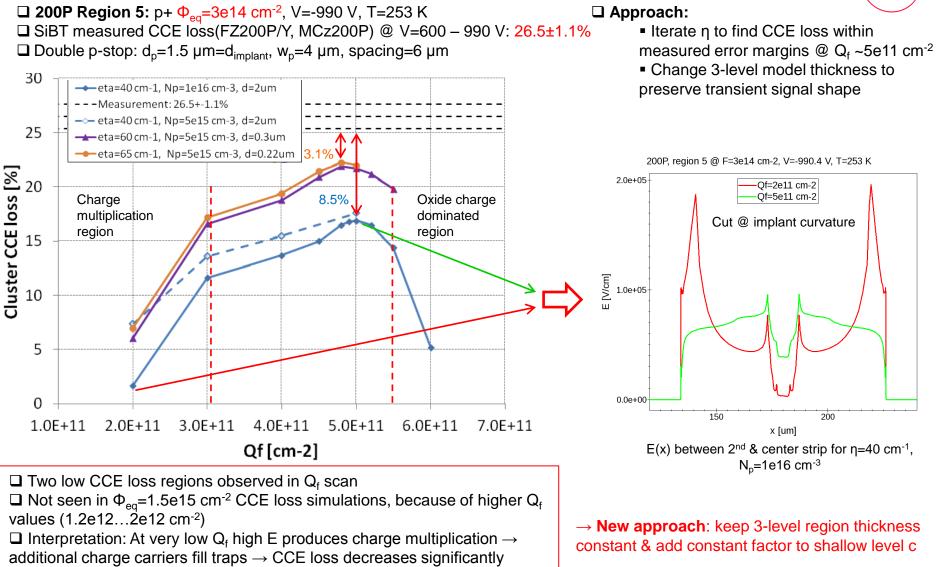
Type of defect	Level [eV]	σ _e [cm²]	σ _h [cm²]	Concentration [cm ⁻³]
Deep acc.	<i>E_C</i> - 0.525	1e-14	1e-14	1.189* Φ + 6.454e13
Deep donor	E_{V} + 0.48	1e-14	1e-14	5.598*Ф - 3.959e14
Shallow acc.	<i>E_C</i> - 0.40	8e-15	2e-14	40*Ф

 \Box Q_f = 1.2e12 cm⁻²: CCE loss \approx 41 %


□ $Q_f = 2e12 \text{ cm}^{-2}$: increased charge sharing when mip position ≥ 30 µm from center strip, but still producing position information

□ When strips are isolated both models produce same cluster CCE at the center of the strip

 \Box Electron density @ Q_f = 1.2e12 cm⁻², V=-1 kV from previous slide

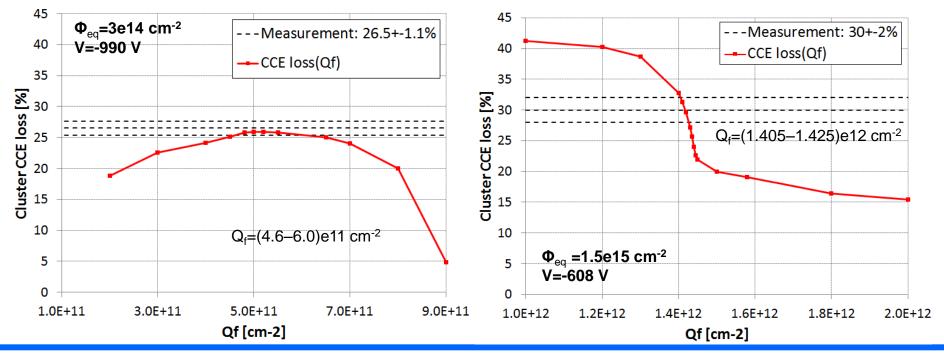

Effect of acceptor traps in non-unif. 3-I model is clearly visible:
 ~5 orders of magnitude difference between models (from n⁺ to p-stop)

$Q_f(\Phi) \& c(\Phi) modelling$

Measured CCE(x) vs simulation: d & η varied

Measured CCE(x) vs simulation: d = constant

 \square 3-level region: d=2 µm, strip length = 3.049 cm \square $\Phi_{eq} \approx 1.5e15$ cm⁻² has largest statistics at ~600 V \rightarrow simulation V adjusted

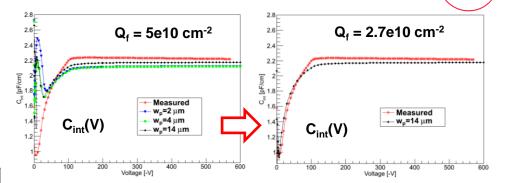

Type of defect	Level	$\sigma_{\rm e}$	$\sigma_{\rm h}$	Concentration	Targe
	[eV]	[cm ²]	[cm ²]	[cm ⁻³]	Meas
Deep acceptor	<i>E_C</i> - 0.525	1e-14	1e-14	1.189* Φ + 6.454e 13	
Deep donor	E_{V} + 0.48	1e-14	1e-14	5.598*Ф - 3.959e14	
Shallow acceptor	<i>E_C</i> - 0.40	8e-15	2e-14	40*Ф	Shallow a

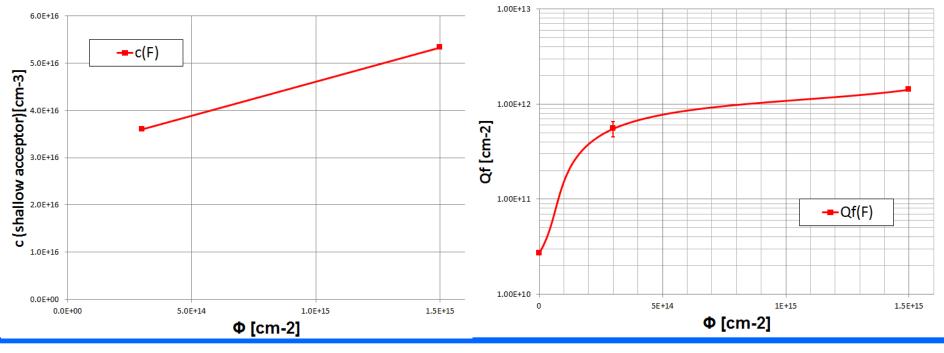
□ Measured CCE loss(FZ200P/Y, MCz200P) @ Φ_{eq} (p+) = 3e14 cm⁻², V = 600 - 990 V: 26.5 ± 1.1 % □ Target Q_f ~5e11 and ~1.5e12 cm⁻² for given fluences
□ Measurement: 6 µm resolution

HELSINE INSTITU PHYSICS

Shallow acc. <i>E</i> _c - 0.40 8e-15 2e-14	14.417*Φ + 3.1675e16
---	----------------------

□ Measured CCE loss(FZ200P/Y, MCz200P/Y) @ Φ_{eq} (mixed) = (1.4 ± 0.1)e15 cm⁻², V = 606 ± 2 V: 30 ± 2 %


$Q_f(\Phi) \& c(\Phi)$ in p+ irradiated region 5 200P

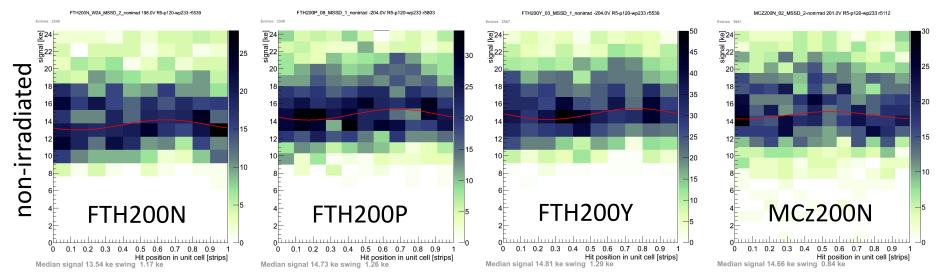

 \square Q_f of non-irradiated 200P from measured initial dip of C_{int}, that is reproduced by decreasing Q_f=2.7e10 cm⁻²

 \square c(shallow acc.) parametrized by using 'fixed' values of $Q_f \rightarrow$ fixed c, parametrized Q_f

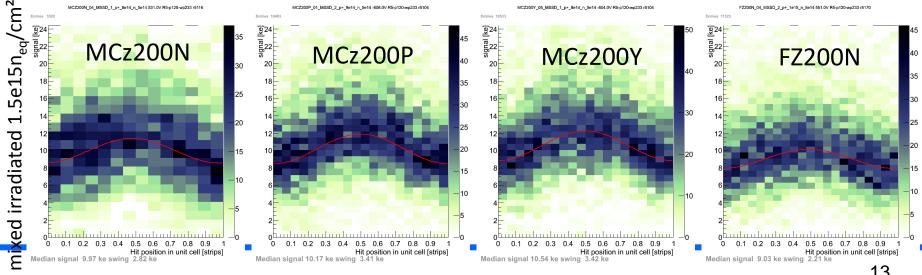
□ Increase of the shallow acceptor concentration is found to be ~0.5 of constant factor at the given fluence range

Fluence	Q _f	c(shallow acceptor)		
[cm ⁻²]	[cm ⁻²]	[cm ⁻³]		
3e14	(5.3±0.7)e11	3.6e16		
(1.4±0.1)e15	(1.415±0.010)e12	5.33e16		

 \Box When position dependency of CCE is modeled by non-unif. 3-I defect model, it is governed by Q_f and shallow acceptor concentration

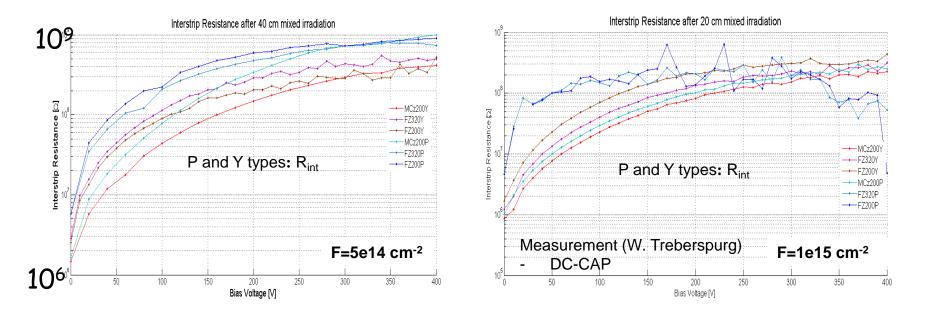

□ By tuning these two parameters it is possible to reproduce measured CCE loss between strips for given fluence

 \Box If one of the parameters is fixed, the other can be solved reliably \rightarrow potential for $Q_f(\Phi)$ parametrization


□ With test values of Q_f the shallow acceptor concentration does not have strong dependence on fluence in the range 3e14 → 1.5e15 cm⁻²

Backup: SiBT measured CCE loss between strips

Signal loss in-between strips ($p=120\mu m$, w/p ~ 0.23)



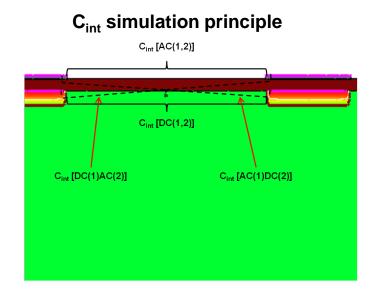
No loss before irrad.; after irrad. ~30% loss; all technologies similar [Phase-2 Outer TK Sensors Review]

Backup: Measured R_{int}

Backup: simulated R_{int} & C_{int}

□ 3 strip structure, $V_{strip1} = V_{strip3} = 0$, $V_{strip2} = LV$ and 0 V □ V = -HV at the backplane

 \square Interstip resistance (R_{int}) is defined as (Induced Current Method):


$$R_{int} = \frac{V_2(LV)}{\frac{I_1(LV) + I_3(LV)}{2} - \frac{I_1(0) + I_3(0)}{2}}$$

R_{int} is plotted as a function of applied voltage V

R_{int} simulation principle

