
Investigation of point and extended defects in electron

irradiated silicon – dependence on the particle energy

Roxana Radu¹, Ioana Pintile¹, Eckhart Fretwurst², Gunnar Lindstroem²

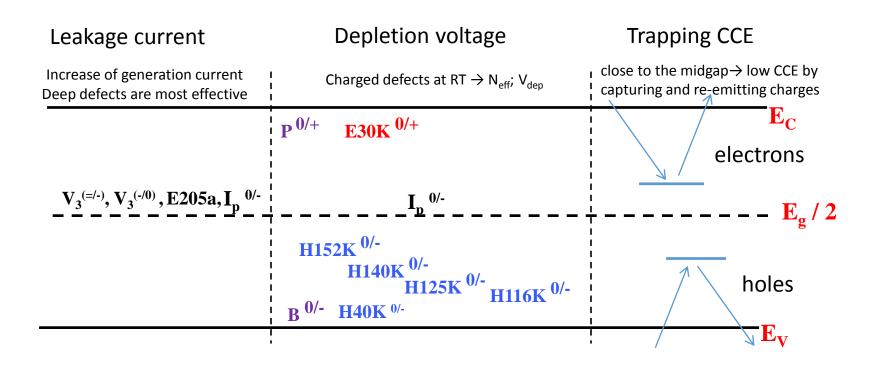
¹ National Institute of Materials Physics NIMP, Bucharest, Romania ²Institute for Experimental Physics, Hamburg University, Hamburg, Germany

24th RD50 Workshop, Bucharest, Romania, 11-13 June 2014

Outline

- Motivation & Goal & Strategy
- Radiation induced defects after electron irradiation
- Impact of defects upon silicon device properties
- Investigation of defect structure
- Conclusions

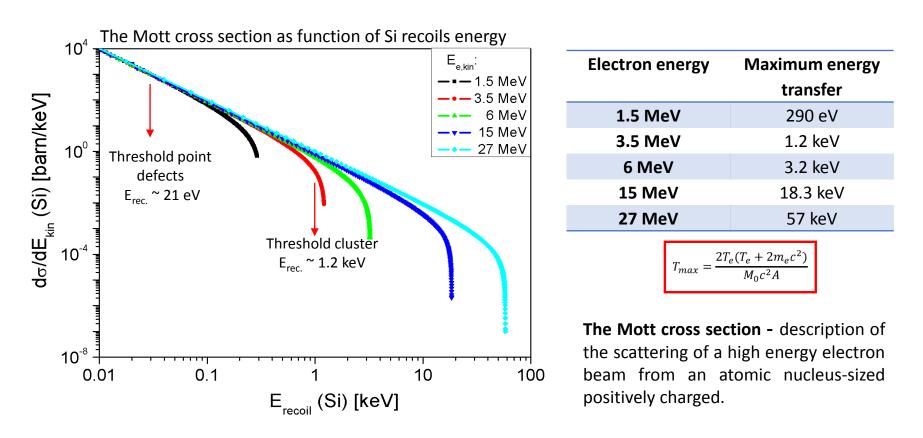
Motivation and Goal: New ways to develop radiation hard silicon sensors \leftrightarrow bridge the gap between the


defect analyses and device performances

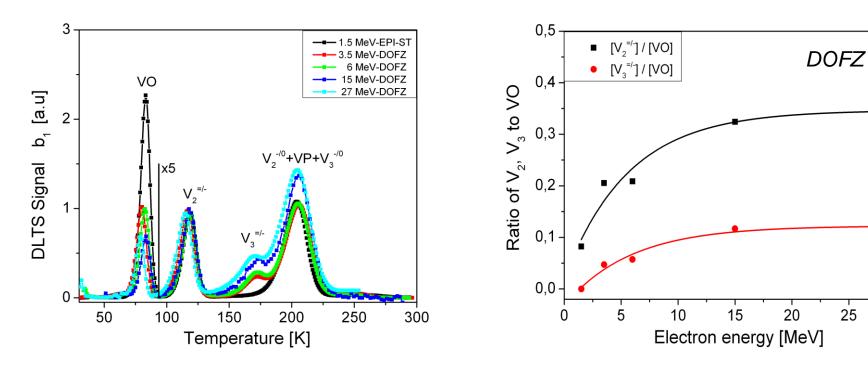
- I. Joint project between NIMP Bucharest and University of Hamburg "Electron irradiation of Si-diodes at <u>E = 1.5 - 27 MeV</u>" presented by Prof. G. Lindström at the last WODEAN Workshop in Bucharest, 13/14 May 2010
- II. <u>"Comprehensive investigation on bulk radiation damage in defect engineered silicon from point defects</u> <u>to clusters"</u> – Project Director Ioana Pintilie, 2011

Strategy:

- a) Irradiation with electrons with kinetic energies ranging: 1.5 MeV ÷ 27 MeV studies performed in Hamburg
- CV/IV characterization, before/after irradiation → analysis of electrically active defects by means of DLTS and TSC methods → correlation with results from diode characteristics
- b) Electron induced damage in Si implanted with ¹⁷O and ¹³C investigations performed in Bucharest
- EPR investigation in defect engineered silicon (O enriched, O lean, C rich, C lean) → studies for defect identification (see talk of S. Nistor)
- HRTEM investigation of the extended and clustered defects → identify the structure of the radiationinduced electrically active defects and establish the role of the impurities in their generation and kinetics (see talk of L. Nistor)


Radiation induced defects after electron irradiation - damage effects

E(30K), E205, Ip, H(40K), H(116K), H(125K), H(140K) and H (152K) - defects with unknown chemical structure (E- electron trap, H- hole trap)


 In semiconductor devices the deep levels kinetics i.e. generation and recombination of charge carrier across the band-gap is the major parameters that govern its characteristics and performances (Shockley-Read-Hall statistics)

From point defects to clusters

- Silicon cascading displacement become relevant for electrons with $T_{max} \ge 1$ keV (equivalent electron kinetic energy ≥ 3.5 MeV)
- As the electron energy decreases , the probability for a single silicon displacement increases

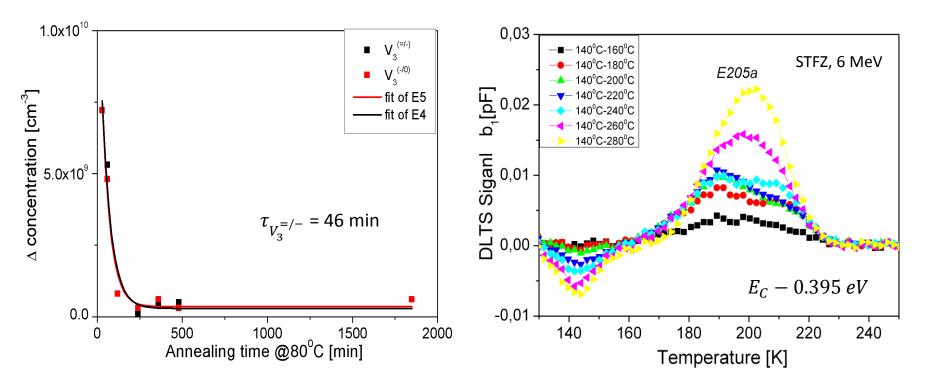
Dependence of defects on electron energy

- VO (Vacancy-Oxygen): point defect
- V₂ (Di-vacancy) point and cluster defect
- V₃ (Tri-vacancy): cluster defect
- E_e = 1.5 MeV: only point defect

- Ratios of di-vacancies (V₂) and tri-vacancies (V₃) to single vacancies increase with energy
- With increasing electron energy divacancies and tri-vacancies are directly created

30

\sum Vacancies / \sum Interstitials

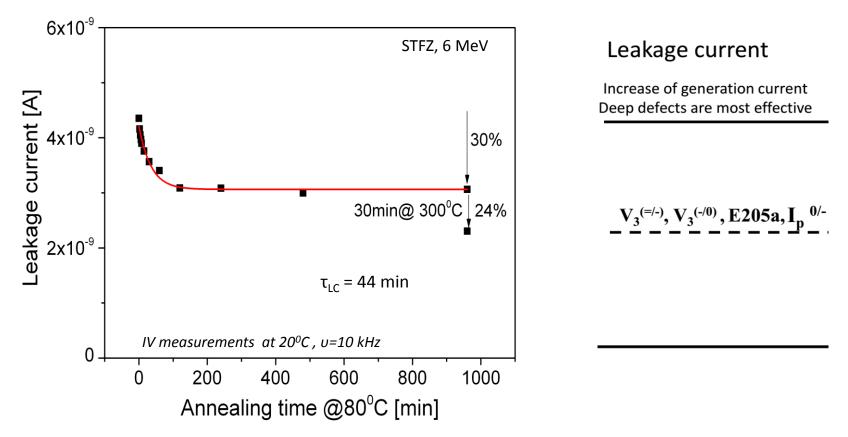

How many vacancies and interstitials are created after electron irradiation?

Ratios of defect concentrations in DOFZ material	1.5 MeV	3.5MeV	6 MeV	15 MeV	27 MeV
$\left[V_2^{=/-}\right] / \left[VO_i^{/-0}\right]$	0.082	0.2	0.21	0.32	0.34
$\left[V_3^{=/-}\right] / \left[VO_i^{/-0}\right]$	0	0.047	0.057	0.116	0.117
$\left[V_3^{=/-}\right] / \left[V_2^{=/-}\right]$	0	0.22	0.27	0.36	0.34
$\frac{\left[VO_i^{/-0}\right] + 2x\left[V_2^{=/-}\right] + 3x\left[V_3^{=/-}\right]}{\left[C_iO_i^{+/0}\right]}$	1.30	1.08	1.45	1.21	1.50

Ratios of defect concentrations in STFZ material	3.5MeV	6 MeV	15 MeV	27 MeV
$\left[V_2^{=/-}\right] / \left[VO_i^{/-0}\right]$	0.24	0.17	0.30	0.26
$\left[V_3^{=/-}\right] / \left[VO_i^{/-0}\right]$	0.05	0.045	0.12	0.12
$\left[V_3^{=/-}\right] / \left[V_2^{=/-}\right]$	0.21	0.26	0.40	0.48
$\frac{\left[VO_{i}^{/-0}\right] + 2x\left[V_{2}^{=/-}\right] + 3x\left[V_{3}^{=/-}\right]}{\left[C_{i}O_{i}^{+/0}\right] + \left[C_{i}C_{S}^{+/0}\right] + \left[C_{i}^{+/0}\right]}$	1.23	2.2	1.14	1.20

 $\frac{\Sigma \text{ vacancies}}{\Sigma \text{ interstitials}} > 1$ with increasing energy, the I_2 (di-interstitial) and I_3 (tri-interstitial) are not measuread.

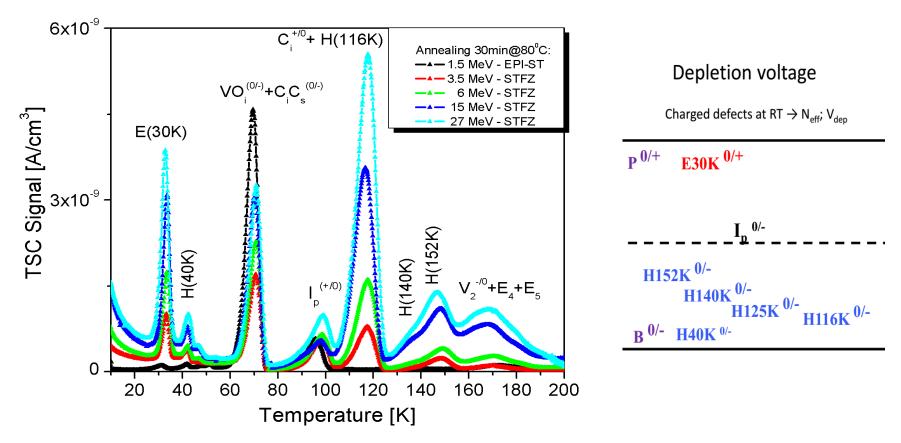
Evidence of the influence of cluster-related defects on LC


Leakage current

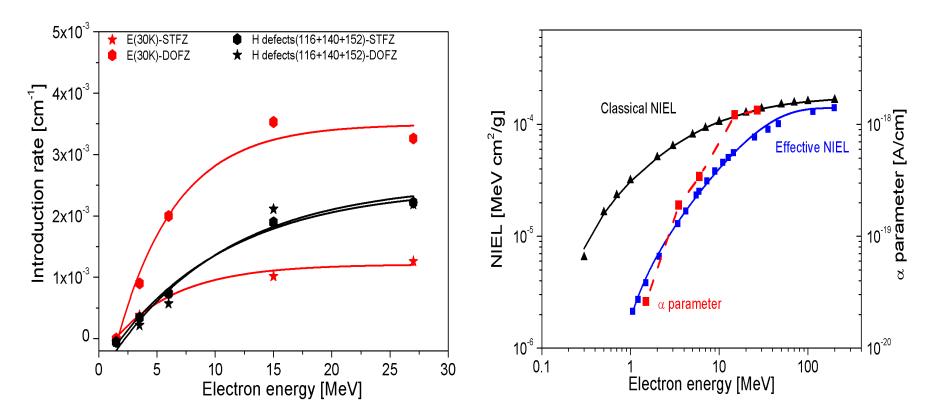
Increase of generation current Deep defects are most effective

V3^(=/-), V3^(-/0), E205a, In

- $V_3^{(=/-)}$, $V_3^{(-/0)}$ effective generation center \rightarrow similar annealing behavior like LC
- E205a defect starts to anneal in at 200 °C, when V₃^(=/-), V₃^(-/0) are not visible
- Increasing T_{ann} the *E205a* defect increases in concentration
- E205a defect responsible for the LC


Evidence of the influence of cluster-related defects on LC

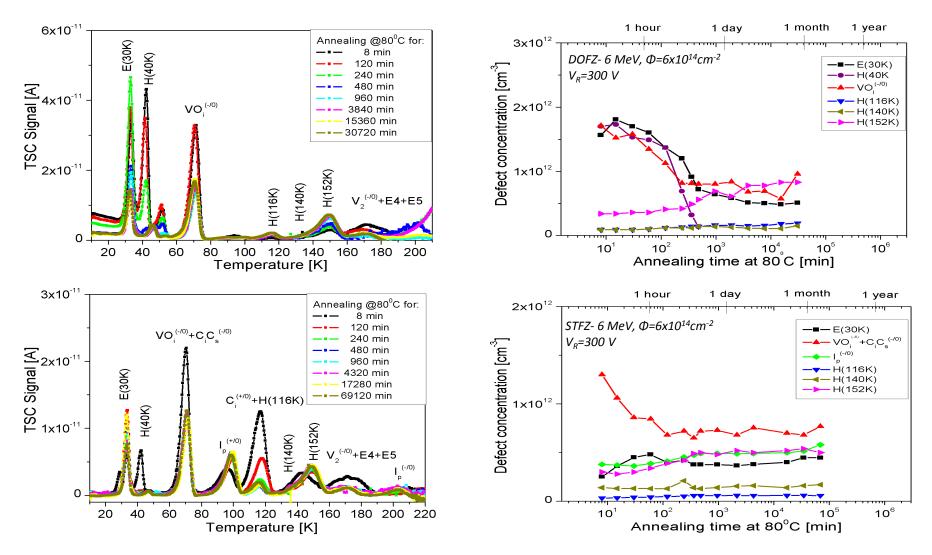
Contribution of defects at the leakage current:


- ~ 60 % of the leakage current, explained by the $V_3^{(-/0)}$ and *E205a* defects:
- 30 % due to the V₃^(=/-), V₃^(-/0) defect, resulted from the isothermal annealing @80 °C
- 24 % due to the E205a defect, resulted from the isochronal annealing up to 300°C
- LC can also arise from the I_p center, whith $E_c 0.55$ eV, and also from the surface currents

Evaluation of the electrically active defects by means of TSC

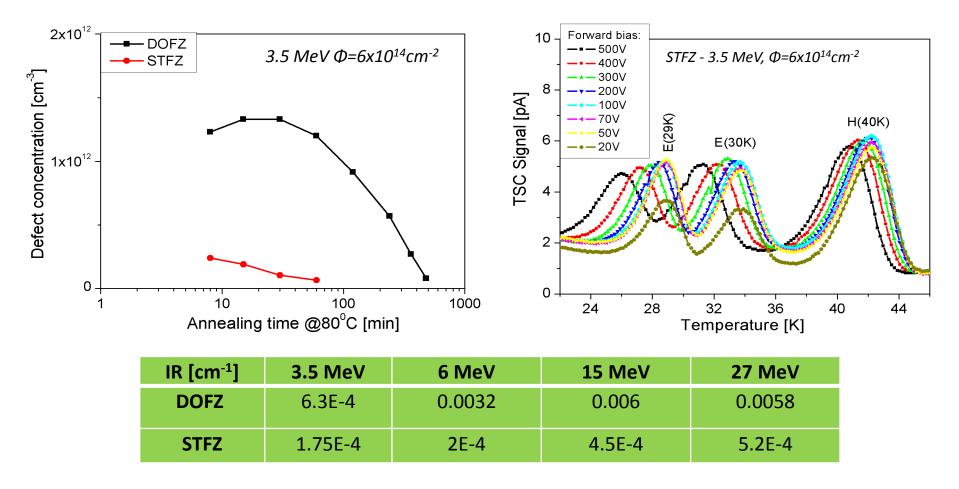
- Study of defects which are not detected by DLTS, especially those defects with strong impact on the N_{eff}
- Increasing electron energy → increase of local density of vacancies and interstitials → cluster defects

Oxygen influence on the IR of E(30K) and H defects

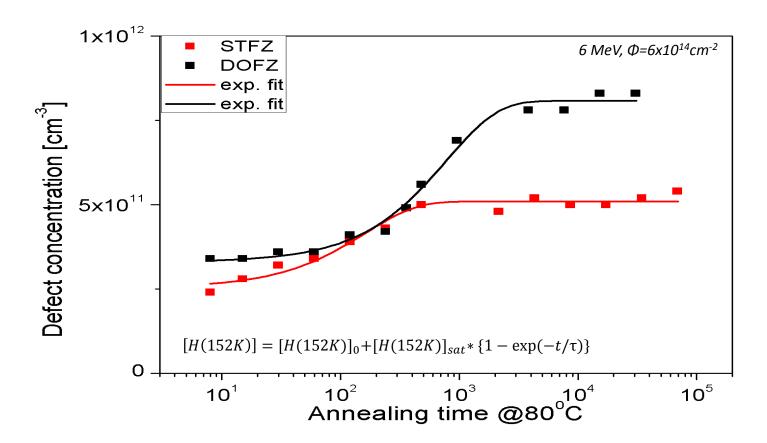


- Introduction rates vs. E_e show a saturation tendency \rightarrow expected from NIEL
- Introduction rates for H defects for DOFZ & STFZ are similar

→ no [O] dependent, → related to the higher order vacancies


- ightarrow to be identified via HRTEM investigations
- Introduction rate for E (30K) is 3 times larger in DOFZ material
 - ightarrow [O] dependent, to be identified via EPR studies

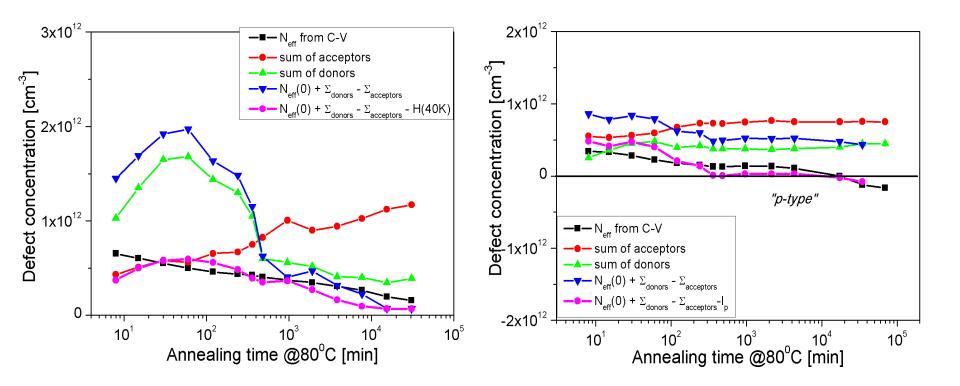
Isothermal annealing at 80°C


 Elevated temperatures (up to 80 °C) are used to accelerate the effect of annealing to study the expected changes of the sensor performances over several years of room temperature equivalent time.

The H(40K) defect

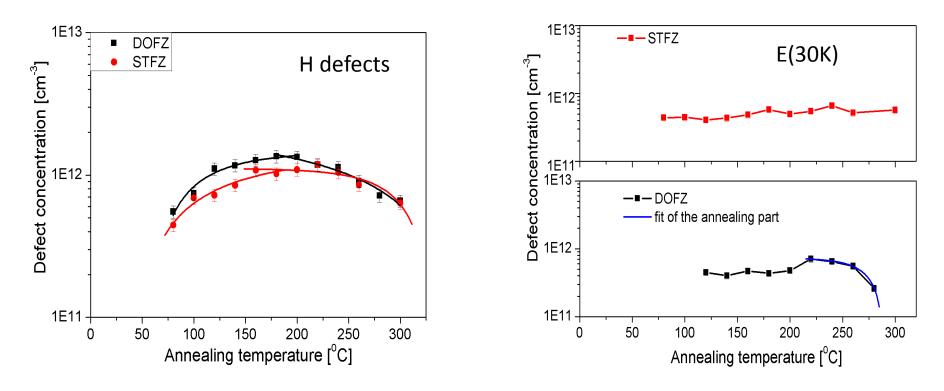
- Annealing out of the H(40K) [O] dependence
- Introduction rate [O] dependence: H(40K) _{DOFZ} ≥ 6 H(40K) _{STFZ}
- The shift of the peak maximum to lower T with $V_R \rightarrow$ Poole-Frenkel effect \rightarrow assume to be a shallow acceptor, negatively charged at RT, which can partially compensate the high [E(30K)]

Annealing-in of the H (152K) defect



Time constants [min]	3.5 MeV	6 MeV	15 MeV
DOFZ	480÷53	724÷87	556÷29
STFZ	65÷12	200÷33	132÷18

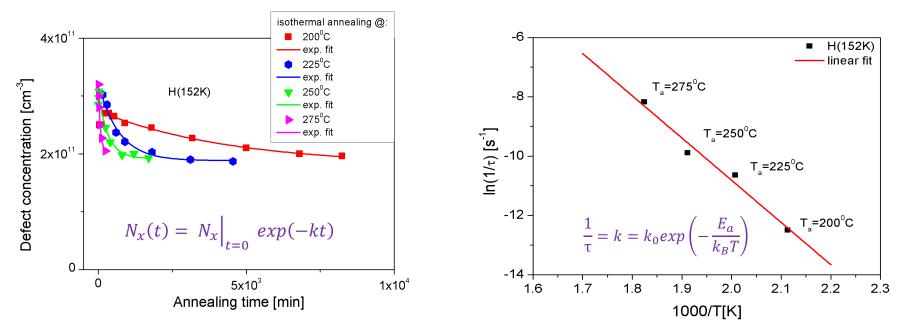
Annealing in of the H(152K) – [O] dependence


24th RD50 Workshop, Bucharest, Romania, 11-13 June 2014

Impact of defects upon macroscopic properties: N_{eff} and V_{dep}

Change of N_{eff}, with the annealing time (also with the aneealing temperature), well described by accounting only the E(30K), H(40K), Ip, H(116K), H(140K) and H (152K) – defects with unknown chemical structure

Kinetics of cluster-related defects



- Concentration of the H defects increases with T_{an} up to ~ 180°C for DOFZ and ~ 240°C for STFZ materials followed by a decrease at higher T_{an}
- In DOFZ, the E(30K) defect increases with the annealing temperature, having a maximum at ~ 220 °C followed by a fast decrease; in STFZ shows only a small increase to be identified via EPR studies

Defect Type	$E_a [eV]$	$k_0[s^{-1}]$
Е(ЗОК)	1.98 ± 0.57	$\approx 2x10^{14}$

Annealing out of H defects strongly depends on O concentration !!!

Annealing mechanisms of H defects

The clusters may dissociate/migrate/diffuse at higher T_{ann}

Time	constants [min]	200 ⁰ C	2	225 °C	250 ^o C		275 ⁰ C	290 ⁰ C	
	DOFZ	530	193		76	5	36	10	
	STFZ	4462		699	330		59	-	
	Defect Ty	pe		$E_a [eV]$			$k_0[s^{-1}]$		
	H(116K)	1.18 ± 0.03		}	$3.2x10^7 \pm 1$			
	H(140K)	1.25 ± 0.08		}	$1.8x10^8 \pm 6$			
	H(152K)	0.98 ± 0.08			$1x10^{6} \pm 7$			

Assuming dissociation process - High chances to be identified via HRTEM investigations ¹⁷

Conclusions

- Threshold for cluster defects : E_{rec.} ~ 1.2 keV
- Contribution of defects at the leakage current ~ 60 % of the leakage current, explained by the V₃^(=/-), V₃^(-/0) and E205a defects
- Change of N_{eff} with the annealing time, well described by accounting the E(30K), H(40K), Ip, H(116K), H(140K) and H (152K) defects
- Introduction rates for H defects for DOFZ & STFZ are similar → no [O] dependent but the annealing out of H(140K&152K) is different → High chances to be identified via HRTEM investigations
- Introduction rate for E(30K) is 3 times larger in DOFZ material → [O] dependent, to be identified via EPR studies

Thank you for your attention

Special thanks to Ioana Pintilie, Gunnar Lindstroem, Eckhart Fretwurst

24th RD50 Workshop, Bucharest, Romania, 11-13 June 2014