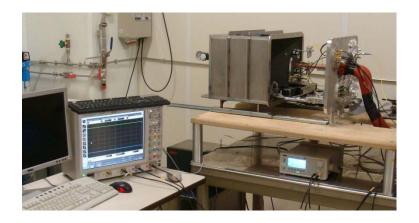

TCT+, eTCT and I-DLTS measurement setups at the CERN SSD Lab

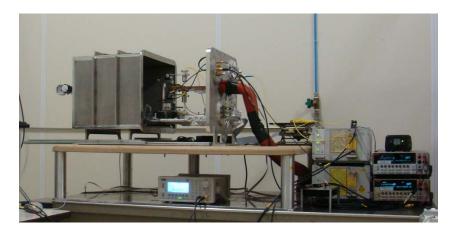
Christian Gallrapp¹

M. Bruzzi², M. Fernandez³, C. Figueiredo¹, M. Moll¹, H. Neugebauer^{1,4}

¹CERN / ²INFN, University of Florence ³IFCA-Santander/ ⁴University of Hamburg

TCT Setups in the CERN SSD Lab




- I-DLTS setup based on former TCT setup
- eTCT setup
- TCT+ setup combines TCT and eTCT

Current-Deep Level Transient Spectroscopy (I-DLTS)

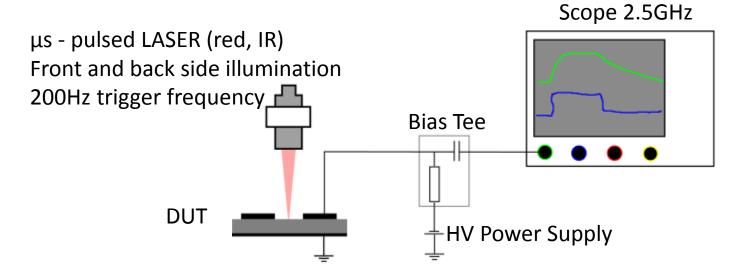
I-DLTS setup

- Equipment
 - Huber CC505 chiller
 Temperature controlled (PT100)
 Minimum Temperature on the sample ca. -25C
 - μs-pulsed LASER
 - Red (660nm)
 - IR (1064nm)
 - Optics for red and IR illumination from top and bottom
 - Temperature measurement on the DUT (PT1000 with Keithley 2410)
 - Bias voltage up to 1000V
 - Bias Tee ($V_{max} = 200V$)
 - Shielded Box (Louvain-Box)
 - Agilent Scope (2.5GHz Bandwidth)
 - Reference diode for red and IR
- LabView based software to loop parameters
 - temperature, bias voltage, pulse width, pulse intensity and repetition



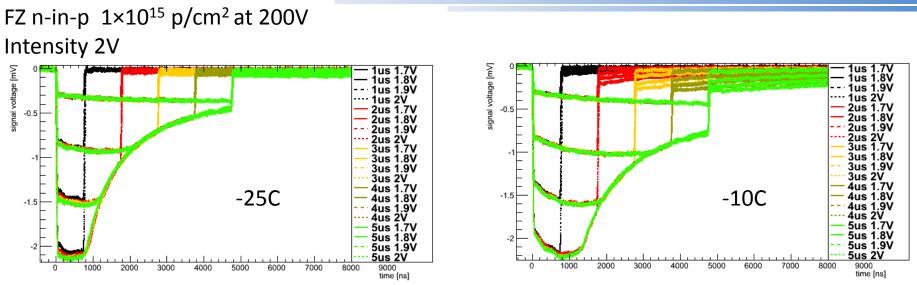
I-DLTS

- Motivation
 - Improve understanding of charge carrier detrapping for defect characterization
 - Investigate energy levels and cross-section of detrapping

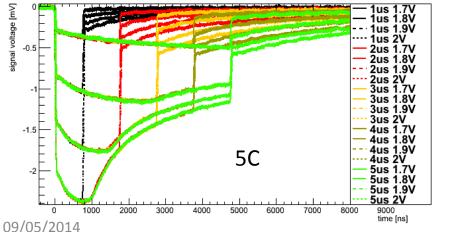

centers

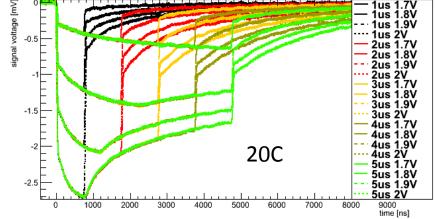
- Previous work:
 - G. Kramberger, et. al.; 2012 JINST 7 P04006
 Determination of detrapping times in semiconductor detectors
 - M. Gabrysch, et.al.; 2012 21st RD50 Workshop Charge carrier detrapping in irradiated silicon sensors after microsecond laser pulses

I-DLTS Layout

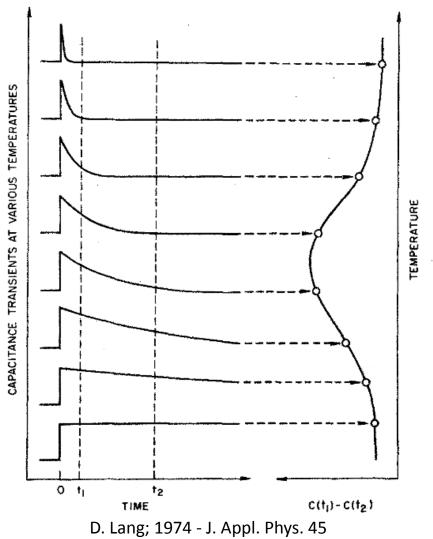

- Illumination with μs-pulsed red and IR LASER pulses (> 0.5μs)
- Biasing up to 200V with maximum bandwidth (20kHz 10GHz)
- No amplifier to keep maximum bandwidth
- Temperature controlled (> -25C)
- Scope with upper bandwidth limit 2.5GHz

Samples and Parameter Space

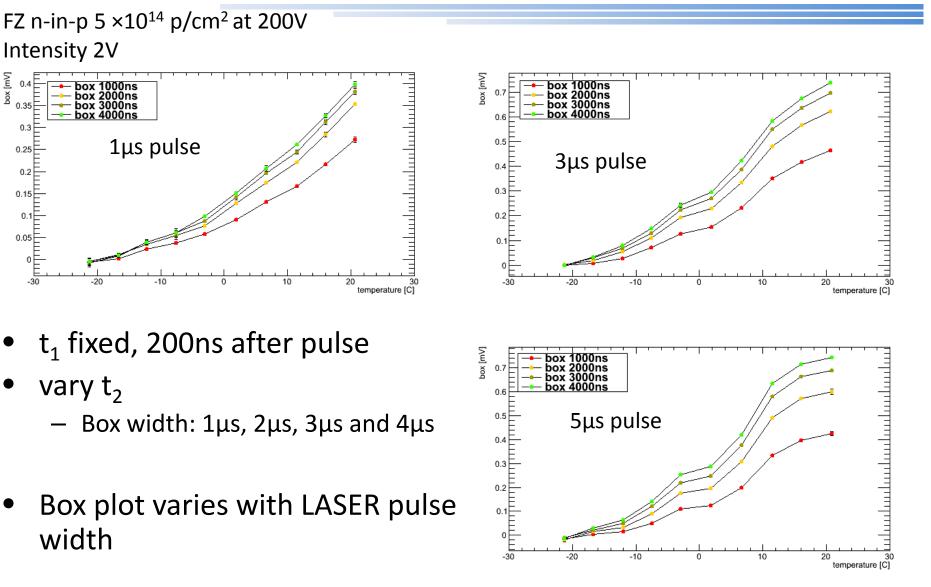

- Parameter space
 - Temperature
 - -20C to 20C in 5C steps
 - Voltage
 - 50V, 100V, 150V, 200V
 - Pulse width
 - 1us, 2us, 3us, 4us, 5us
 - LASER Intensity
 - 1.7V, 1.8V, 1.9V, 2.0V
 - Repetition:
 - Five repetitions for each scan point
- Further measurements:
 - Scan parameter space with IR front, Red and IR back
 - Determination of most suitable parameter space for analysis


- Micron Samples:
 - Thickness: 300µm
 - FZ and MCz n-in-p
 - Irradiation at CERN PS: 24GeV/c protons
 - Fluence: non irrad; 5×10¹³ p/cm²; 5×10¹⁴ p/cm²; 1×10¹⁵ p/cm²
- Illumination: Red front

Current with Temperature

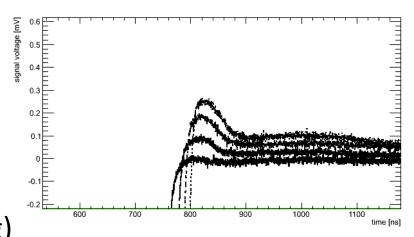


- Signal height after LASER pulse varies between 0mV at -25C and -1mV at 20C
- Current drop during pulse varies with temperature (also voltage)


Double Boxcar

- Select rate window defined by t₁ and t₂
- Determine signal variation
 Signal(t₁)-Signal(t₂)
 for different temperatures
 - Operation modes
 - $-t_1$ fixed, vary t_2
 - $-t_2$ fixed, vary t_1
 - $-t_1/t_2$ fixed, vary t1 and t_2

09/05/2014 Deep-level transient spectroscopy: A new method to characterize traps in semiconductors

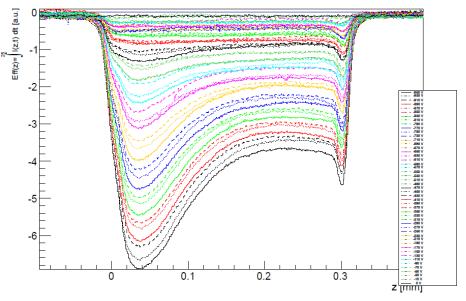

Box Plot for variable pulse width

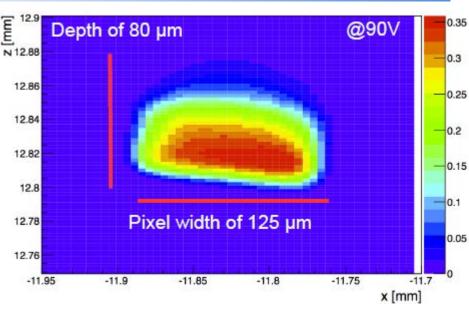
box [mV]

Next Steps

- Influence of electronics on signal
 - Undershoot in unirradiated sample
 - Undershoot visible at low temperatures (low de-trapping)

- Analysis following approach for TCT pulses (see: Kramberger, 2012 - JINST 7 P04006)
- Simulation
 - transient after laser pulse
 - Current drop during laser pulse


Edge-TCT


eTCT setup

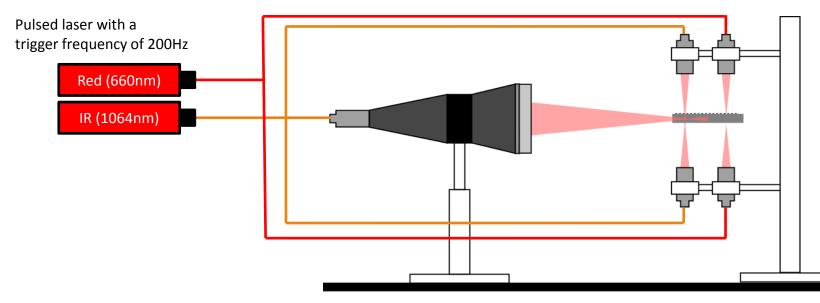
- Equipment
 - Computer controlled Peltier cooling (PT1000)
 Min. Temperature on the DUT -20C
 - Annealing up to 60C directly in the setup
 - picosecond-pulsed IR LASER
 - Optics to illuminate the sample edge
 - Bias voltage up to 1000V
 - Wide bandwidth amplifier
 - Bias Tee for DC readout
 - EM shielded Box
 - Agilent Scope (2.5GHz Bandwidth)
 - XYZ stages with µm step width
- LabView based software to loop parameters
 - temperature, bias voltage and position

Recent eTCT measurements

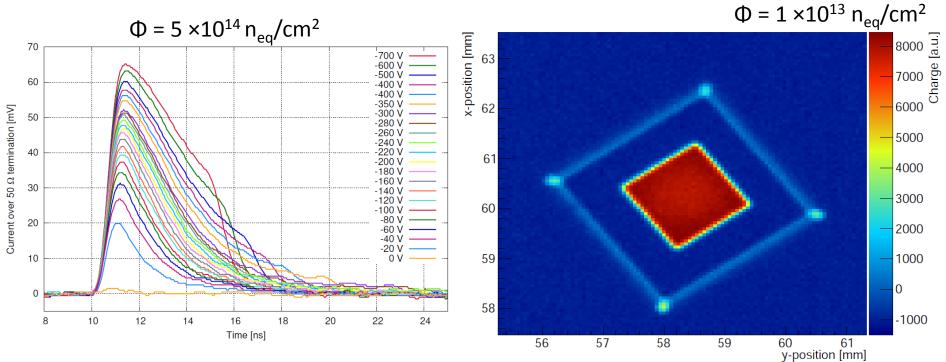
- eTCT measurements on HV-CMOS
 - D. Muenstermann, et.al.; 2013 23rd RD50 Workshop
 Active pixel sensors in 180 nm HV
 CMOS technology for HL-LHC
 detector upgrades

- Irradiated Micron strip sensors
 - S. Wonsak, et.al.;
 2014 24th RD50 Workshop
 Status of Silicon Strip Sensor
 Measurements at Liverpool

TCT+ a common setup for TCT and eTCT

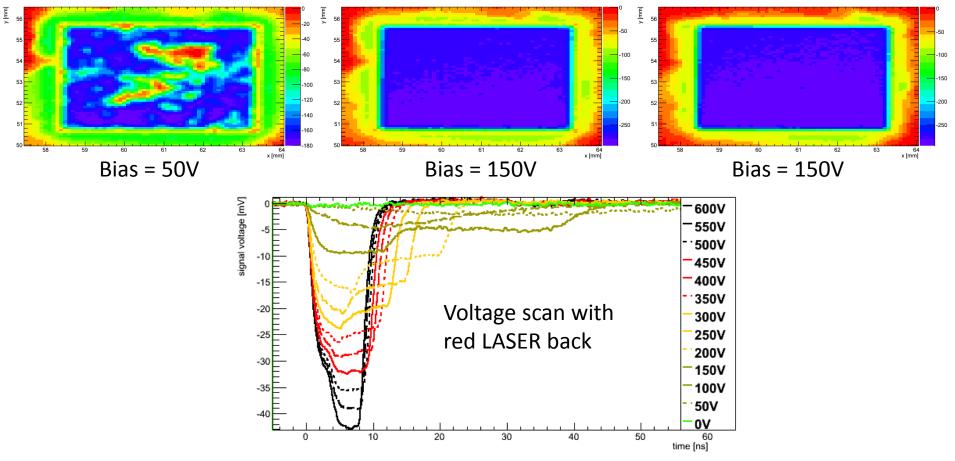

TCT+ Setup

- Equipment
 - Computer controlled Peltier cooling (PT1000) with Huber CC505 chiller Min. Temperature on the DUT -20C
 - picosecond-pulsed LASER
 - Red (660nm)
 - IR (1064nm)
 - Optics for illumination
 - Top red and IR
 - Bottom red and IR
 - Sample edge IR
 - Bias voltage up to 1000V
 - Wide bandwidth amplifier
 - Bias Tee for AC readout
 - EM shielded Box
 - Agilent Scope (2.5GHz Bandwidth)
 - XYZ stages with µm step width
- LabView based software to loop parameters
 - temperature, bias voltage, position and repetition


TCT+ Layout

- Combination of a conventional red and IR TCT setup with an edge-TCT setup
- Temperature controlled Peltier/Chiller cooling system.
- Stage system provides μm steps in X, Y and Z

Measurements with TCT+ Irradiated MCz diodes


Irradiated MCz diodes (70MeV protons)

 R. Carney – Master Thesis; University of Edinburgh Investigation of Magnetic Czochralski diodes using novel TCT setup for future silicon detectors

Measurements with TCT+ Diodes with amplification

Surface scan with red LASER front

 V. Greco, et.al.; 2014 – 24th RD50 Workshop Preliminary results on proton irradiated LGAD PAD detectors 09/05/2014

Measurements with TCT+ 3D strip diodes

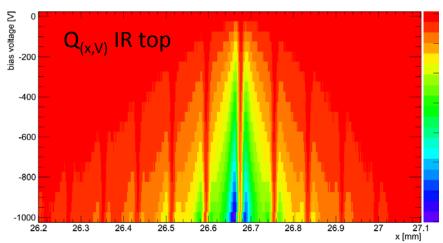
Single sided 3D strip diodes on SOI from CNM

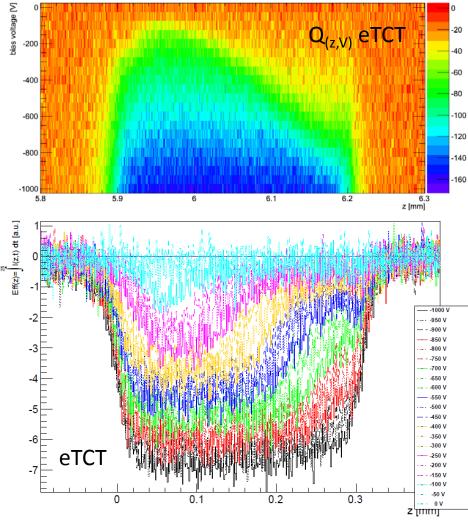
Surface scan with IR LASER at 70V [mm] ∽ 6.52 للله ح 53.6 300 250 53.58 6.5 200 53.56 6.48 150 53.54 100 6.46 53.52 50 6.44 53.5 60.5 60.54 7.58 7.6 7.62 7.64 60.52 60.56 60.50 60.6 x (mm) x (mm) columns columns

Surface scan with red LASER at 70V

500

400

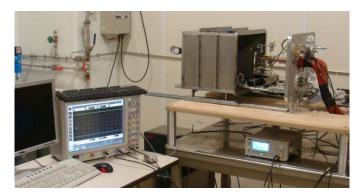

300

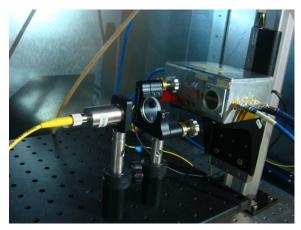

200

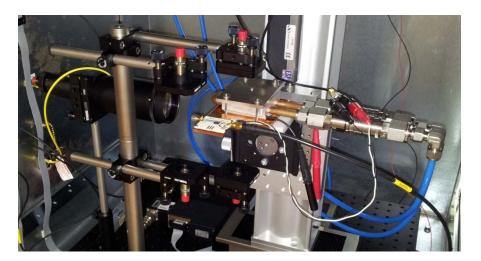
100

Measurements with TCT+ irradiated strip sensors from Micron

- TCT and eTCT on 1×10¹⁵ n_{eq}/cm² irradiated strip sensors
 - S. Wonsak, et.al.;
 2014 24th RD50 Workshop
 Status of Silicon Strip Sensor
 Measurements at Liverpool




Upcoming measurement


- Irradiated Micron diodes 24GeV/c protons (FZ, MCz)
 - non-irrad., 5.9×10¹³ p/cm², 1.0×10¹⁴ p/cm², 5.3×10¹⁴ p/cm², 9.8×10¹⁴ p/cm², 2.0×10¹⁵ p/cm², 4.4×10¹⁶ p/cm²
- Irradiated Micron strip sensor 24GeV/c protons (FZ, MCz)
 - non-irrad., 6.9 ×10¹⁴ p/cm², 9.7 ×10¹⁴ p/cm², 1.9 ×10¹⁵ p/cm², 3.1 ×10¹⁶ p/cm²
- Pion irradiated STMicroelectronics diodes
 - non-irrad., $1 \times 10^{11} \text{ π/cm}^2$, $3 \times 10^{11} \text{ π/cm}^2$, $1 \times 10^{12} \text{ π/cm}^2$, $3 \times 10^{12} \text{ π/cm}^2$, $1 \times 10^{13} \text{ π/cm}^2$, $3 \times 10^{13} \text{ π/cm}^2$, $1 \times 10^{14} \text{ π/cm}^2$, $3 \times 10^{14} \text{ π/cm}^2$, $7 \times 10^{14} \text{ π/cm}^2$

Thanks for your attention Questions?

