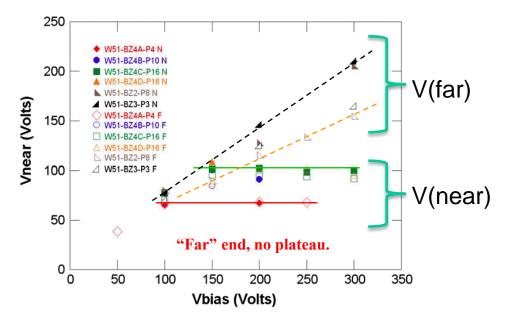
Evaluation of the Low Resistance Strip Sensors (Low-R) Fabricated at CNM

CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia)

Contact person: Miguel Ullán

- Motivation
- Proposed solution
- Design
- First batch
- Second batch tests
- Alternative technological solutions
- Conclusions

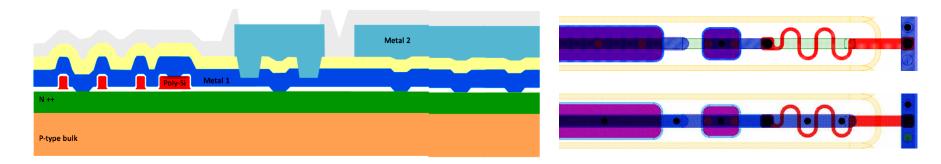

Motivation

- In the scenario of a beam loss there is a large charge deposition in the sensor bulk and coupling capacitors can get damaged
- Punch-Through Protection (PTP) structures used at strip end to develop low impedance to the bias line and evacuate the charge

But...

- Measurements with a large charge injected by a laser pulse showed that the strips can still be damaged
 - The implant resistance effectively isolates the "far" end of the strip from the PTP structure leading to the large voltages

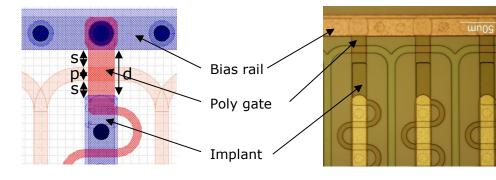
H. F.-W. Sadrozinski, et al. "Punch-through protection of SSDs in beam accidents" NIMA 658, Issue 1, pp. 46-50, 2011.

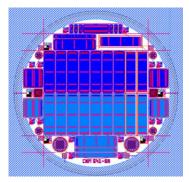

Proposed solution

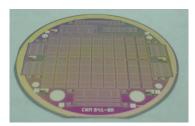
- ➢ To reduce the resistance of the strips: "<u>Low-R strip sensors</u>"
- ➤ Deposition of Aluminum on top of the implant: $R_{□}(Al) \sim 0.04 \ \Omega/□ \implies 20 \ \Omega/cm \text{ (Drastic reduction of strip resistance!)}$
- Metal layer deposition on top of the implant (first metal) before the coupling capacitance is defined (second metal).
 - Double-metal processing to form the coupling capacitor
 - A layer of high-quality dielectric is needed between metals for the coupling cap.

Teposited on top of the first Aluminum (not grown)

- $rac{}$ Low temperature processing needed not to degrade Al: T < 400 °C
 - Plasma Enhanced CVD (PECVD) process at 300-400 °C
- Triple-layer (oxide (1000 Å) + Si₃N₄ (1000 Å) + oxide (1000 Å)): to avoid pinholes \rightarrow Yield

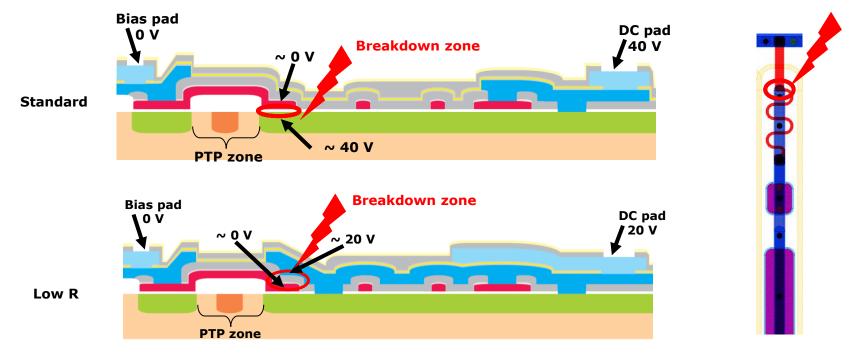





- > PTP design:
 - Design of experiments (DOE): varying $p, s \Rightarrow d$

DOE		N–P separation 's' [um]		
		12	8	6
P-stop width 'p' [um]	8	32	24	20
	6	30	22	18
	4	28	20	16
Total PTP distance 'd'			nce 'd'	

- > Wafer design:
 - In ATLAS-barrel-like sensors: "LowR sensors"
 - 64 channels, ~2.3 mm long strips
 - First metal connected to the strip implant to reduce R_{strip}
 - Each sensor with a different PTP geometry (with polysilicon bridge)
 - 10 extra standard sensors for reference (no metal in implant). Identical design to the LowR but without metal strip on top of the implant



First batch

- > PTP tests showed unexpected behavior:
 - Irreversible breakdown
 - Breakdown voltage independent of PTP structure geometry
 - at ~40 V in standard sensors and at ~20 V in LowR sensors
 - Oxide breakdown at a different place in the strip occurs before PTP is activated.
 - Thin oxides overlooked during fabrication
 - Only critical when PTP structures are present and tested

Second batch

- > New batch processed correcting these problems:
 - Thicker thermal oxide between implant and polysilicon Rbias to avoid breakdown in standard sensors → Thicker coupling capacitor in standard sensors (~1000 A)
 - 2) Thicker oxide deposited between polysilicon Rbias and Metal1 in LowR sensors to avoid breakdown in LowR sensors
 - 3) In some extra sensors new metal mask (METAL-B) with no metal on top of polysilicon Rbias area to avoid the possibility of breakdown in that area
 - 4) Some wafers have a reduced p-stop doping to make sure we have PTP

> Design of Experiments:	P-stop implant dose	
WAFERS	4.00E+13	1.00E+13
 Metal1 over poly-R_{bias} Extra isolation layer (1500 A) between poly and metal Coupling capacitance triple-layer: 1000/1000 A 	1-6	7,8
 No Metal1 over poly-R_{bias} No extra isolation layer between poly and metal Coupling capacitance triple-layer: 700/700/700 A 	9,10	11-12

General performance

IV, CV

Centro Nacional de Microelectrónica

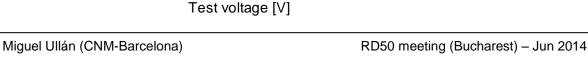
- Normal behaviour
- $\succ V_{FD} \sim 70 V$
- \succ Higher leakage currents after cut (under study)
- Strip resistance

25300

25200

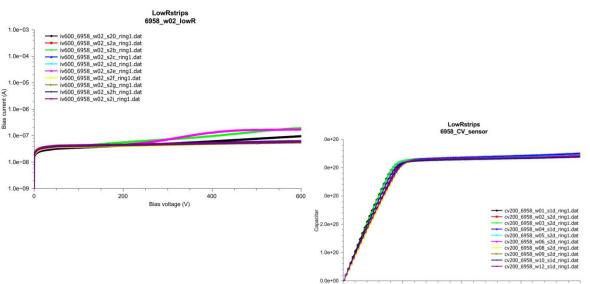
25100

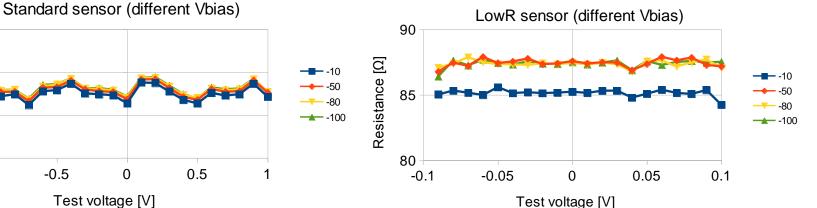
25000


-1

Resistance [Ω]

 \blacktriangleright ~3 orders of magnitude reduction


(A)


Bias

0

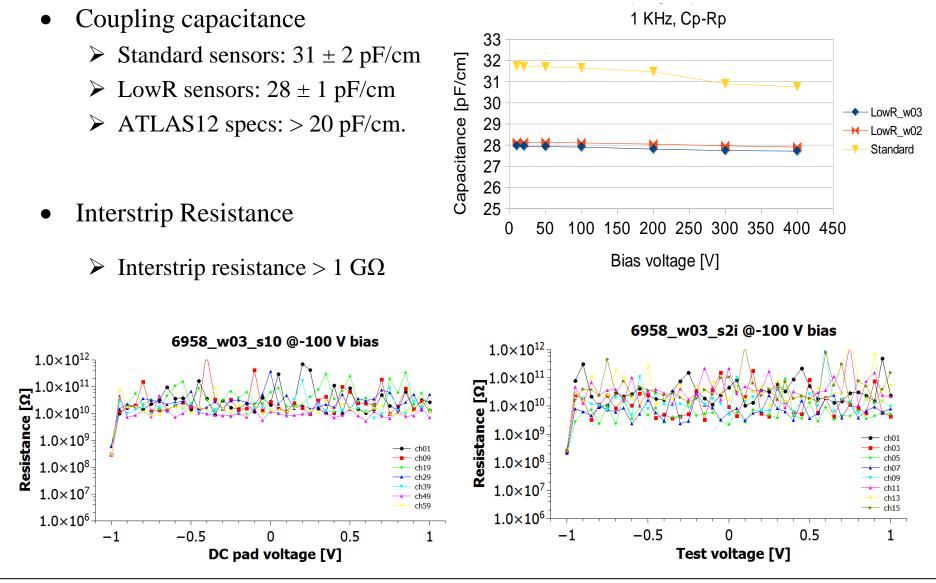
-0.5

50

100

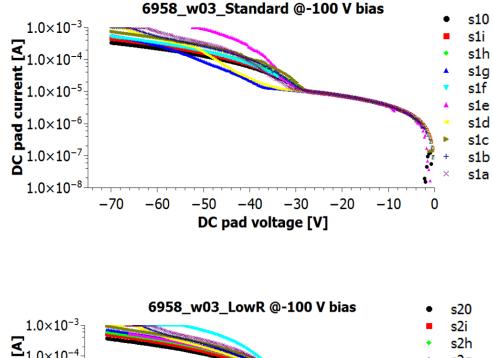
Bias voltage (V)

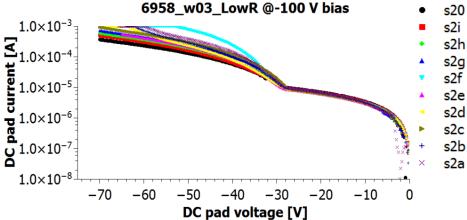
150


200

SCIPP

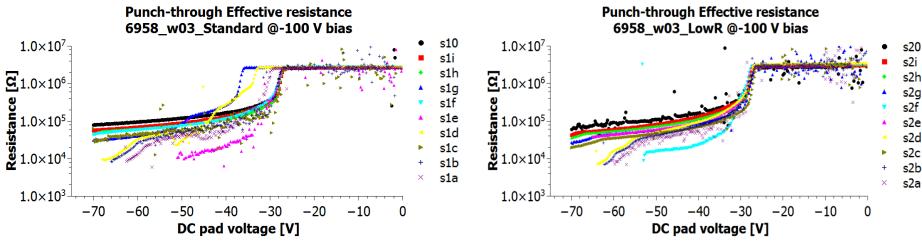
General performance

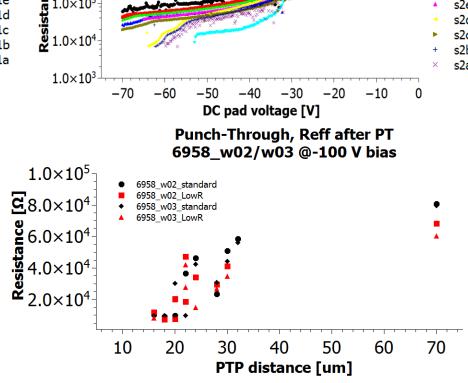



PTP structure tests

- IV sweeps
 - ➢ Reversible breakdown (=> PT)
 - PTP voltage ~ 30 V
 - No evident correlation between
 PTP distance and PTP voltage

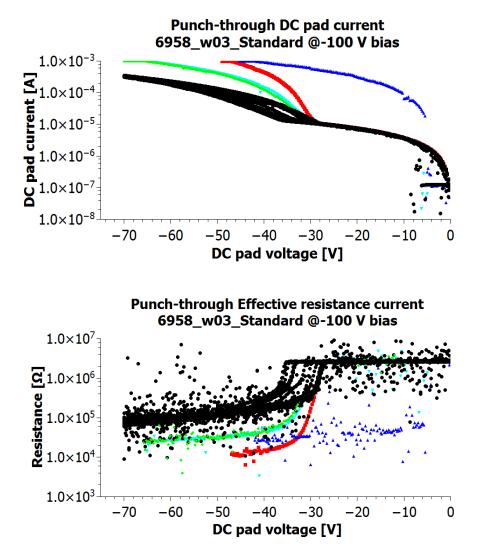
1m_d16_p04_s06 (s1a)	2m_d16_p04_s06 (s2a)
1m_d18_p06_s06 (s1b)	2m_d18_p06_s06 (s2b)
1m_d20_p04_s08 (s1c)	2m_d20_p04_s08 (s2c)
1m_d20_p08_s06 (s1d)	2m_d20_p08_s06 (s2d)
1m_d22_p06_s08 (s1e)	2m_d22_p06_s08 (s2e)
1m_d24_p08_s08 (s1f)	2m_d24_p08_s08 (s2f)
1m_d28_p04_s12 (s1g)	2m_d28_p04_s12 (s2g)
1m_d30_p06_s12 (s1h)	2m_d30_p06_s12 (s2h)
1m_d32_p08_s12 (s1i)	2m_d32_p08_s12 (s2i)
1m_d70_p08_s31 (s10)	2m_d70_p08_s31 (s20)



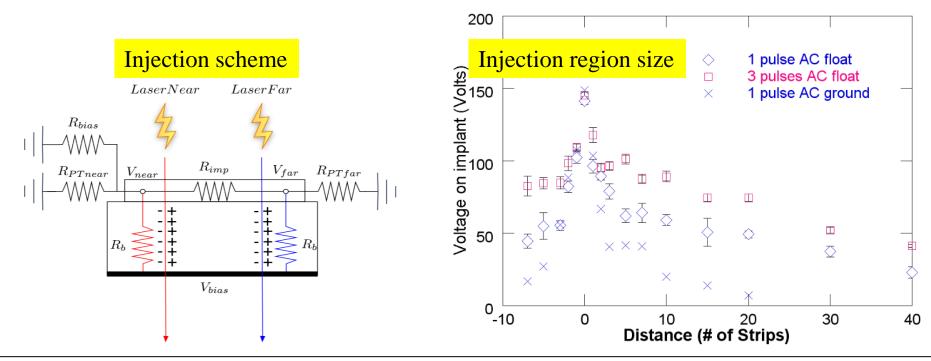

PTP structure tests

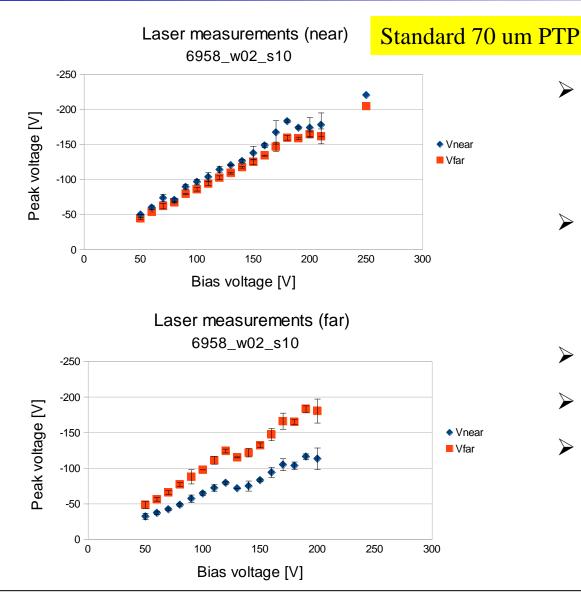
• PT effective resistance

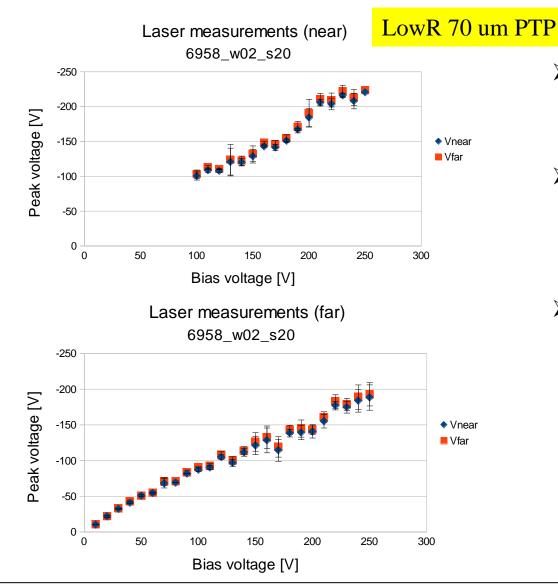
There seems to be a correlation between final effective resistance and PTP distance, although not evident within the same wafer

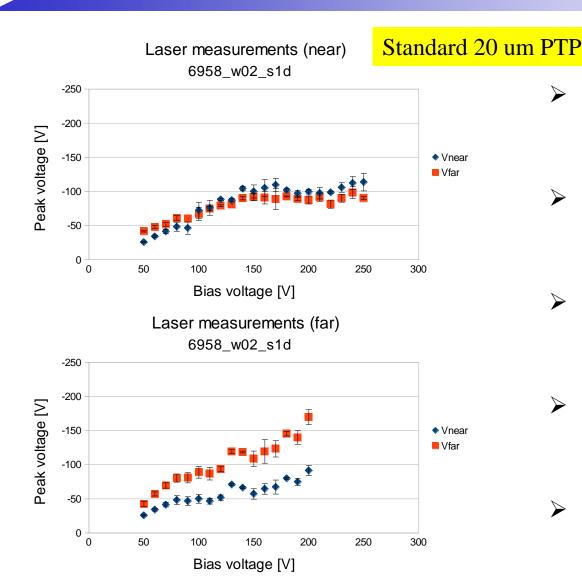


PTP structure tests

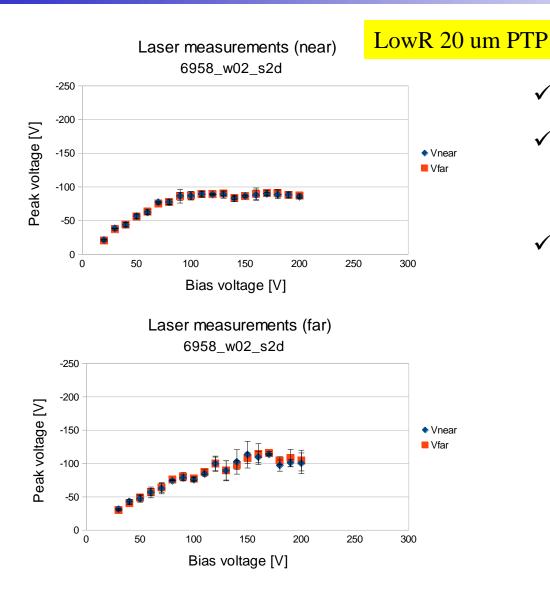

- Channel-to-channel
 - Punch-Through activation voltage (Vpt) is not stable among channels, geometry dependence seems to be low.
 - Final effective resistance value is stable among channels.




- We use Alessi LY-1 "cutting" IR laser (1064 nm) to inject a large amount of charge locally in the sensor.
- The total amount of charge is about $3x10^7$ MIPS, spread over few mm.
- We inject the laser at either near and far locations to assess the sensor vulnerability to large charges, since PTP(near) is superior to PTP(far).



- IFIC SCIPP
- When laser is injected next to the near DC pad, peak values on Vfar are similar to the ones on Vnear.
- As seen before, when laser is injected next to the far DC pad, peak values on Vfar are higher than on Vnear.
- ➢ No plateau up to ~180 V.
- ➢ Strange "bump" at 140 V bias.
- At 250 V, sensor current value jumps.

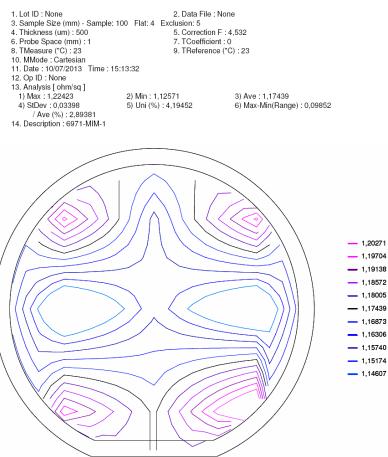

- For LowR sensors, Vfar and Vnear peak values are similar.
- Peak voltages on both near and far ends tend to stabilize at ~180 V bias. But no evident plateau is observed.
- Sensor leakage current jumped at 250 V

- When laser is injected on near side, plateu is observed after 150 V bias.
- No difference is observed between Vnear and Vfar when laser is injected in the near side.
- No plateau observed in Vfar after charge injection on far side
- Peak voltages are similar to previous results on HPK sensors with p-stop isolation.
- Sensor bias current jumped one order of magnitude when sensor bias reached 200 V.

- ✓ Vfar = Vnear
- ✓ A plateau is observed for both near and far laser injections on Vfar and on Vnear.
- ✓ When laser is fired on the near side, plateu is seen after 100 V bias. For the far side case, plateau is observed after 120 V.

- Other methods to obtain LowR sensors being studied:
 - TiSi₂: allows the use of high temperature steps after the oxide deposition
 - \rightarrow oxide densification \rightarrow higher yield
 - Highly doped polysilicon: allows the growth of thermal oxide after it
 - \rightarrow high quality oxide
 - \rightarrow back to "standard" process

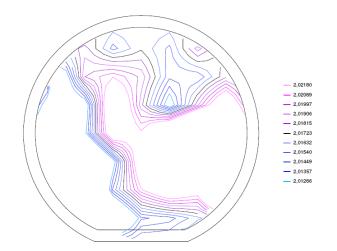
	sheet R (Ohm/#)	kOhm/cm	strip R (kOhm)
Implant	22	11	25.3
Metal	0.04	0.02	0.05
Metal-B			0.946
TiSi2	1.2	0.6	1.38
Poly	3	1.5	3.45


A small batch of sensors currently being fabricated at CNM

Titanium Silicide (TiSi₂)

- TiSi₂ processing technology at CNM
 - Good formation of TiSi₂ layer
 - Low sheet resistance: $\sim 1.2 \Omega/\Box$
 - Densification at 900 °C , 30 min
 - Self aligned process (\rightarrow No mask)
- ➢ TiSi₂ MiM capacitors fabricated
 - 98-100 % yield up to 100 V (not enough statistics: 1-2 cap failing out of 62 measured)

Contour Map

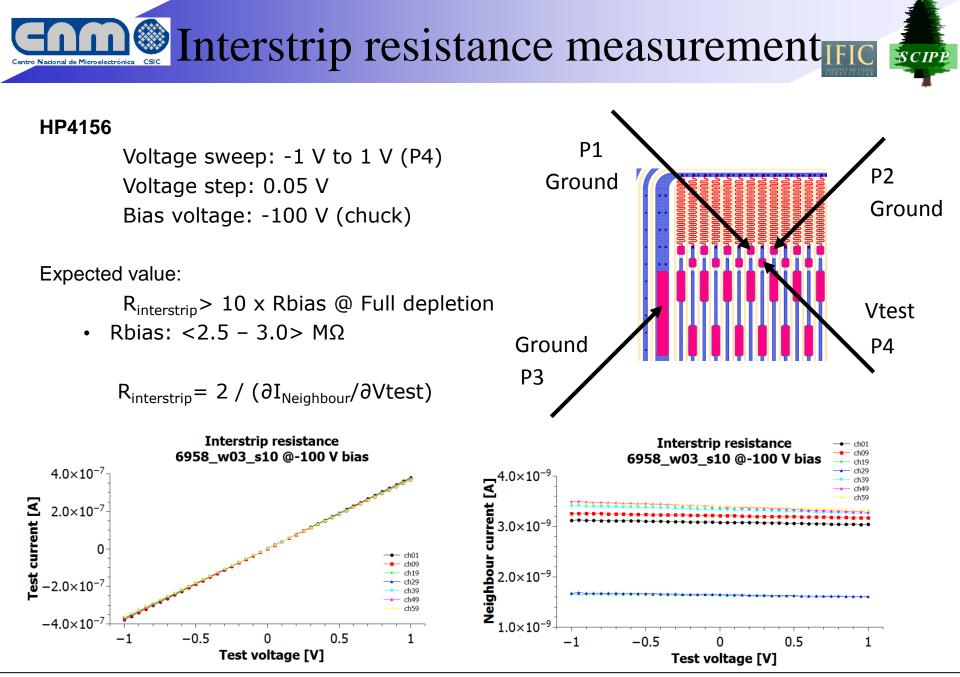


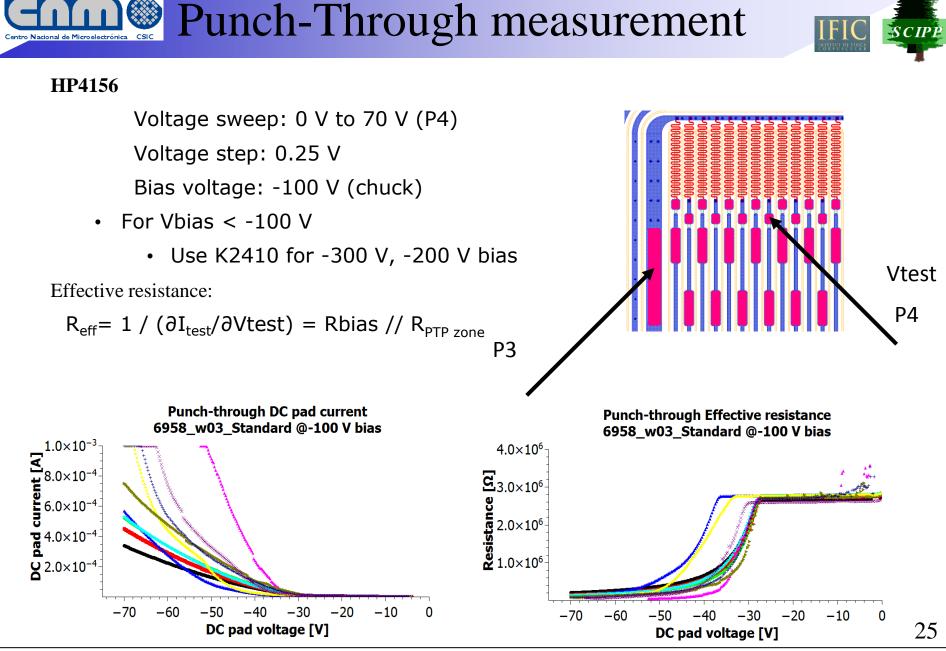
Highly doped Poly-Si

- Polysilicon layer doped with liquid source (POCl₃, "Phosphoryl chloride") in contact with the silicon implant (substitutes the metal layer)
 - ➢ High doping levels reached at high temperatures (1050°C) and long times
- Possibility to grow a thermal oxide on top of the polysilicon layer to form the coupling capacitor
 - Much higher quality oxide
 - Although risk of lower breakdown voltages
 - Higher thermal load of the process
 - Risk of dopant precipitates later in the process
- MIM capacitors
 - ➢ Good conductance (~2-3 Ohm/sq)
 - 98-100 % yield up to 20 V
 - Breakdown @ 40-50 V (2000 A ox. thickness)

	Contour Map	
1. Lot ID : None 3. Sample Size (mm) - Samp 4. Thickness (um) : 500 6. Probe Space (mm) : 1 8. TMeasure (°C) : 23 10. MMode : Cartesian 11. Date : 19/12/2013 Time	5. Correction 7. TCoefficie 9. TReferen	n F : 4,532 ont : 0
12. Op ID : None 13. Analysis [ohm/sq] 1) Max : 2,04698 4) StDev : 0,01227 / Ave (%) : 0,60850	2) Min : 1,99059 5) Uni (%) : 1,39771	3) Ave : 2,01723 6) Max-Min(Range) : 0,05639
14 Description : 7146-MIM-3		

Conclusions & future work


- ✓ Low-resistance strip sensors (LowR) proposed to extend the protection afforded by PTP structure to the entire active area of the sensor
- Implementation with Aluminum layer in contact with the implant to drastically reduce strip resistance
 - LowR sensors show similar general characteristics as standard sensors
 - PTP behaviour varies for different structures (problems of first batch solved), although still some features to be fully understood.
 - Laser tests show an effective reduction of the implant voltage at both near and far sides of the strip, and for charge injection at either strip side.
- ✓ New possible implementations being tried with TiSi₂ and polysilicon to assure a better coupling capacitor formation, and a more standard processing
- Future work
 - \circ Irradiations
 - $\circ~$ Test new devices with TiSi_2 and highly doped Poly-Si


Thank you

Extra slides

