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 In the scenario of a beam loss there is a large charge deposition in the sensor 

bulk and coupling capacitors can get damaged 

 Punch-Through Protection (PTP) structures used at strip end to develop low 

impedance to the bias line and evacuate the charge 

Motivation 

But… 

 Measurements with a large charge 

injected by a laser pulse showed 

that the strips can still be damaged  
 The implant resistance 

effectively isolates the “far” end 

of the strip from the PTP 

structure leading to the large 

voltages 

V(far) 

V(near) 

“Far” end, no plateau.   

H. F.-W. Sadrozinski, et al. “Punch-through protection of SSDs in 

beam accidents” NIMA 658, Issue 1, pp. 46-50, 2011. 
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 To reduce the resistance of the strips: “Low-R strip sensors” 

 Deposition of Aluminum on top of the implant:  

R□(Al) ~ 0.04 W/□   20 W/cm (Drastic reduction of strip resistance!) 

 Metal layer deposition on top of the implant (first metal) 

before the coupling capacitance is defined (second metal). 

 Double-metal processing to form the coupling capacitor 

 A layer of high-quality dielectric is needed between metals for the coupling cap. 

Deposited on top of the first Aluminum (not grown) 

Low temperature processing needed not to degrade Al: T < 400 ºC 

– Plasma Enhanced CVD (PECVD) process at 300-400 ºC 

Triple-layer (oxide (1000 Å) + Si3N4 (1000 Å) + oxide (1000 Å)): to avoid pinholes  Yield 

 

 

Proposed solution 
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 PTP design: 

 Design of experiments (DOE): varying p, s  d 

 

 

 

 

 

 Wafer design: 

 10 ATLAS-barrel-like sensors: “LowR sensors”  

– 64 channels, ~2.3 mm long strips 

– First metal connected to the strip implant to reduce Rstrip 

– Each sensor with a different PTP geometry (with polysilicon 

bridge) 

 10 extra standard sensors for reference (no metal in implant). 

Identical design to the LowR but without metal strip on top of 

the implant 

 

Design 

d 
s 
p Bias rail 

Poly gate 

Implant 

s 



Miguel Ullán (CNM-Barcelona)  RD50 meeting (Bucharest) – Jun 2014 6 

 PTP tests showed unexpected behavior: 

 Irreversible breakdown 

 Breakdown voltage independent of PTP structure geometry 

 at ~40 V in standard sensors and at ~20 V in LowR sensors 

 Oxide breakdown at a different place in the strip occurs before PTP is activated.  

 Thin oxides overlooked during fabrication 

 Only critical when PTP structures are present and tested 

 

First batch 

Low R 

PTP zone 

Bias pad 
0 V DC pad 

40 V 
~ 0 V 

~ 40 V 

Breakdown zone 

Breakdown zone 

PTP zone 

Bias pad 
0 V DC pad 

20 V ~ 0 V ~ 20 V 

Standard 
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 New batch processed correcting these problems: 

1) Thicker thermal oxide between implant and polysilicon Rbias to avoid 

breakdown in standard sensors  Thicker coupling capacitor in standard 

sensors (~1000 A) 

2) Thicker oxide deposited between polysilicon Rbias and Metal1 in LowR 

sensors to avoid breakdown in LowR sensors 

3) In some extra sensors new metal mask (METAL-B) with no metal on top of 

polysilicon Rbias area to avoid the possibility of breakdown in that area 

4) Some wafers have a reduced p-stop doping to make sure we have PTP 

 Design of Experiments: 

 

  

Second batch 

P-stop implant dose 

WAFERS 4.00E+13 1.00E+13 

• Metal1 over poly-Rbias 

• Extra isolation layer (1500 A) 
between poly and metal 

• Coupling capacitance triple-layer: 
1000/1000/1000 A 

1-6 7,8 

• No Metal1 over poly-Rbias 

• No extra isolation layer between 
poly and metal 

• Coupling capacitance triple-layer: 
700/700/700 A 

9,10 11-12 
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 IV, CV 

 Normal behaviour 

 VFD ~ 70 V 

 Higher leakage  

currents after cut 

(under study) 

 Strip resistance 

 ~3 orders of magnitude reduction 

General performance 
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 Coupling capacitance 

 Standard sensors: 31 ± 2 pF/cm 

 LowR sensors: 28 ± 1 pF/cm 

 ATLAS12 specs: > 20 pF/cm. 

 

 Interstrip Resistance 

 Interstrip resistance > 1 GΩ 

 

General performance 
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 IV sweeps 

 Reversible breakdown (=> PT) 

 PTP voltage ~ 30 V 

 No evident correlation between 

PTP distance and PTP voltage 

PTP structure tests 

1m_d16_p04_s06 (s1a) 

1m_d18_p06_s06 (s1b) 

1m_d20_p04_s08 (s1c) 

1m_d20_p08_s06 (s1d) 

1m_d22_p06_s08 (s1e) 

1m_d24_p08_s08 (s1f) 

1m_d28_p04_s12 (s1g) 

1m_d30_p06_s12 (s1h) 

1m_d32_p08_s12 (s1i) 

1m_d70_p08_s31 (s10)  

2m_d16_p04_s06 (s2a) 

2m_d18_p06_s06 (s2b) 

2m_d20_p04_s08 (s2c) 

2m_d20_p08_s06 (s2d) 

2m_d22_p06_s08 (s2e) 

2m_d24_p08_s08 (s2f) 

2m_d28_p04_s12 (s2g) 

2m_d30_p06_s12 (s2h) 

2m_d32_p08_s12 (s2i) 

2m_d70_p08_s31 (s20)  
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 PT effective resistance 

 

 

 

 

 

 

 There seems to be a correlation 

between final effective resistance 

and PTP distance, although not 

evident within the same wafer  

PTP structure tests 
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 Channel-to-channel 

 Punch-Through activation voltage 

(Vpt) is not stable among channels, 

geometry dependence seems to be 

low. 

 Final effective resistance value is 

stable among channels.  

 

 

PTP structure tests 
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 We use Alessi LY-1 “cutting” IR laser (1064 nm) to inject a large amount 

of charge locally in the sensor. 

 The total amount of charge is about 3x107 MIPS, spread over few mm. 

 We inject the laser at either near and far locations to assess the sensor 

vulnerability to large charges, since PTP(near) is superior to PTP(far). 

Laser tests 

Injection scheme Injection region size 
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 When laser is injected next to 

the near DC pad, peak values 

on Vfar are similar to the ones 

on Vnear. 

 As seen before, when laser is 

injected next to the far DC 

pad, peak values on Vfar are 

higher than on Vnear. 

 No plateau up to ~180 V. 

 Strange “bump” at 140 V bias.  

 At 250 V, sensor current value 

jumps.  
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Standard 70 um PTP 

Laser scan results 
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 For LowR sensors, Vfar and 

Vnear peak values are 

similar. 

 Peak voltages on both near and 

far ends tend to stabilize at 

~180 V bias. But no evident 

plateau is observed. 

 Sensor leakage current jumped 

at 250 V 
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Laser scan results 
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 When laser is injected on near 

side, plateu is observed after 

150 V bias. 

 No difference is observed 

between Vnear and Vfar when 

laser is injected in the near side. 

 No plateau observed in Vfar 

after charge injection on far 

side 

 Peak voltages are similar to 

previous results on HPK sensors 

with p-stop isolation. 

 Sensor bias current jumped one 

order of magnitude when sensor 

bias reached 200 V. 

 

Standard 20 um PTP 

Laser scan results 
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 Vfar = Vnear 

 A plateau is observed for both 

near and far laser injections 

on Vfar and on Vnear. 

 When laser is fired on the near 

side, plateu is seen after 100 V 

bias. For the far side case, 

plateau is observed after 120 V. 
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Laser scan results 
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  Other methods to obtain LowR sensors being studied: 

 TiSi2: allows the use of high temperature steps after the oxide 

deposition  

 oxide densification  higher yield 

  Highly doped polysilicon: allows the growth of thermal oxide after it  

 high quality oxide 

 back to “standard” process 

 

 

 

 

 

 

 

 A small batch of sensors currently being fabricated at CNM 

 

Alternative technological solutions 

sheet R (Ohm/#) kOhm/cm strip R (kOhm) 

Implant 22 11 25.3 

Metal 0.04 0.02 0.05 

Metal-B 0.946 

TiSi2 1.2 0.6 1.38 

Poly 3 1.5 3.45 
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 TiSi2 processing technology at CNM 

 Good formation of TiSi2 layer 

 Low sheet resistance: ~1.2 Ω/⁭ 

 Densification at 900 ºC , 30 min 

 Self aligned process ( No mask) 

 TiSi2 MiM capacitors fabricated 

 98-100 % yield up to 100 V  

(not enough statistics: 1-2 cap failing out of 

62 measured) 

 

Titanium Silicide (TiSi2) 
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 Polysilicon layer doped with liquid source (POCl3, “Phosphoryl chloride”) 

in contact with the silicon implant (substitutes the metal layer) 

 High doping levels reached at high temperatures (1050ºC) and long times 

 Possibility to grow a thermal oxide on top of the polysilicon layer to form 

the coupling capacitor 

 Much higher quality oxide 

 Although risk of lower breakdown voltages 

 Higher thermal load of the process 

 Risk of dopant precipitates later in the process 

 MIM capacitors 

 Good conductance (~2-3 Ohm/sq) 

 98-100 % yield up to 20 V 

 Breakdown @ 40-50 V (2000 A ox. thickness) 

 

 

Highly doped Poly-Si 
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 Low-resistance strip sensors (LowR) proposed to extend the protection 

afforded by PTP structure to the entire active area of the sensor 

 Implementation with Aluminum layer in contact with the implant to drastically 

reduce strip resistance 

 LowR sensors show similar general characteristics as standard sensors 

 PTP behaviour varies for different structures (problems of first batch solved), 

although still some features to be fully understood. 

 Laser tests show an effective reduction of the implant voltage at both near and far 

sides of the strip, and for charge injection at either strip side. 

 New possible implementations being tried with TiSi2 and polysilicon to assure 

a better coupling capacitor formation, and a  more standard processing 

 Future work 

o Irradiations 

o Test new devices with TiSi2 and highly doped Poly-Si 

 

Conclusions & future work 



Thank you 
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Extra slides 
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HP4156 

     Voltage sweep: -1 V to 1 V (P4) 

     Voltage step: 0.05 V     

     Bias voltage: -100 V (chuck) 

      

Expected value:  

     Rinterstrip> 10 x Rbias @ Full depletion 

• Rbias: <2.5 – 3.0> MΩ 

 

 Rinterstrip= 2 / (∂INeighbour/∂Vtest) 

 

P1 
P2 Ground 
Ground 

P4 

Vtest 

P3 

Ground 

Interstrip resistance measurement 
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HP4156 

     Voltage sweep: 0 V to 70 V (P4) 

     Voltage step: 0.25 V     

     Bias voltage: -100 V (chuck) 

• For Vbias < -100 V 

• Use K2410 for -300 V, -200 V bias  

Effective resistance: 

   Reff= 1 / (∂Itest/∂Vtest) = Rbias // RPTP zone 

 

 

 

Punch-Through measurement 

25 

P4 

Vtest 

P3 


