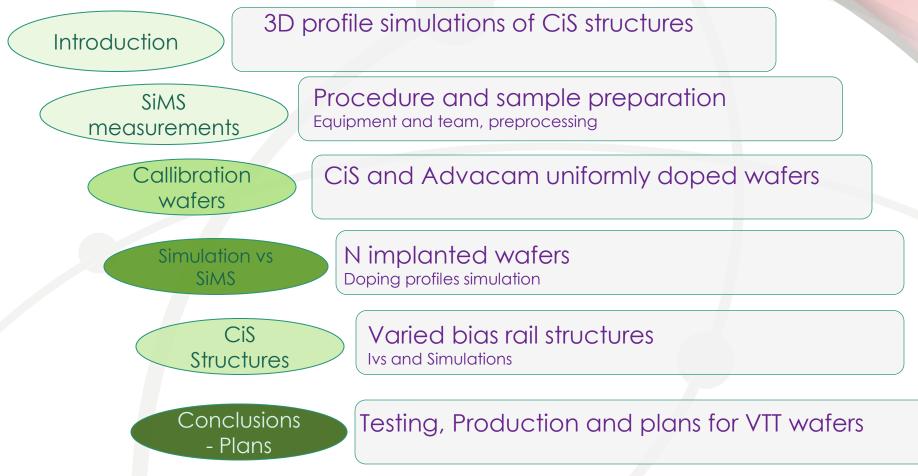
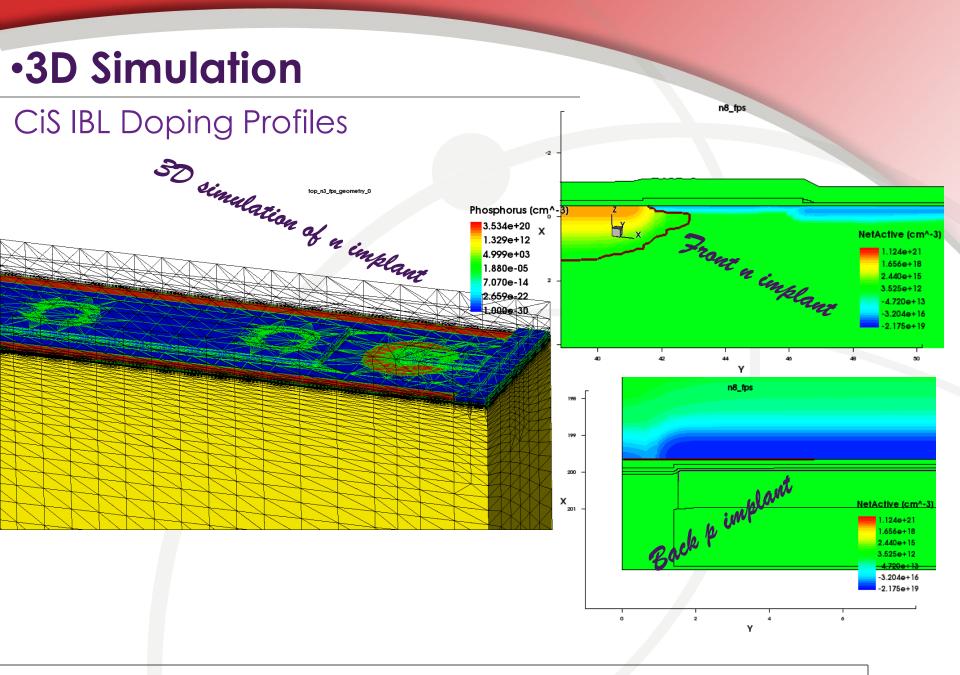
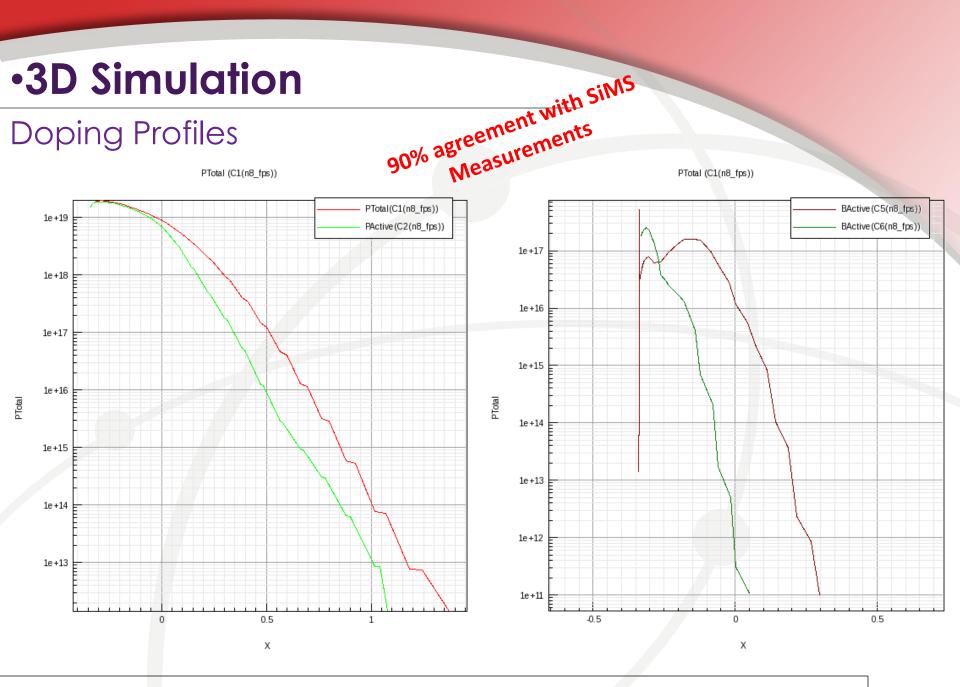


SiMS Measurements

and 3D Simulation on variant stuctures

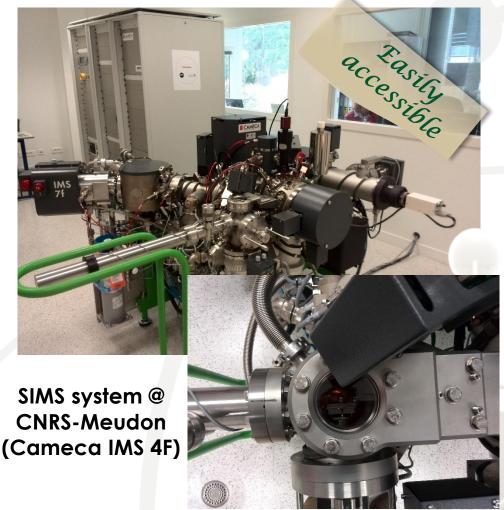

<u>V. Gkougkousis¹</u> A. Lounis^{1,2}, N. Dinu¹, A. Bassalat^{1,2}, C. Nellist^{1,2}, S. Dumitriu^{1,4}


1. Laboratoire de L'accélérateur Linéaire


- 2. Université Paris-SUD XI
- 3. CERN
- 4. CEA

24th RD50 Workshop, Bucharest - 12/6/2014

Overview



12/5/2014

SiMS Method @ Versailles

(slide by N. Dinu)

- ✓ Analytical technique to <u>characterize the</u> <u>impurities in the surface and near surface</u> (~30µm) region
- Relies on sputtering of a *primary energetic* ion beam (0.5-20 keV) on sample surface and analysis of produced ionized secondary particles by mass spectrometry
- ✓ Good detection sensitivity for many elements: *it can detect dopant densities as low* <u>as 10¹⁴ cm⁻³</u>
- Allows multielement detection, <u>has a depth</u> <u>resolution of 1 to 5 nm</u> and can give a lateral surface characterization on a scale of several microns
 - Destructive method, since the act of the removing material by sputtering leaves a crater in a sample
 - It determines the *total dopant density profile*

Sample preparation

Sample preparation \geq

- Wafer Dicing (Uniformly doped wafers of 4" and 6", not thinned)
- Chemical oxide etching
- Diamond powder surface polishing
- Bevel cutting with 2° angle

Future plans \succ

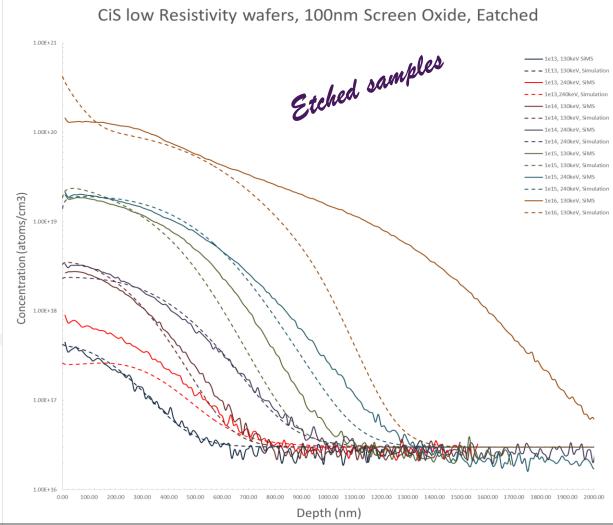
- Through-oxide measurements under way
- Investigation of oxide layer thickness with respect to etching rates and time Sample preparation and
 - measurements Nicoleta Dinu
- Sorin Dumitriu
- Francois Jomard

CiS and VTT wafers

N in N, CiS production, <100> orientation														
Oxide thickness	100 nm							200 nm						
P implantation doses	1013	cm ⁻²	10 ¹⁴ cm ⁻² 1		10 ¹⁵	cm ⁻²	101 ⁶ cm ⁻²	10 ¹³ cm ⁻²		10 ¹⁴ cm ⁻²		10 ¹⁵ cm ⁻²		101 ⁶ cm ⁻²
Implantation energy (keV)	130	240	130	240	130	240	130	130	240	130	240	130	430	130
Annealing	4hours, 975 °C													

 \checkmark ρ = 0.25 Ω/cm (3 x10¹⁶/cm³) 380µm thickness

 $\checkmark \rho = 4 \text{ k}\Omega/\text{cm} (1,1 \text{ x}10^{12}/\text{cm}^3) 525 \mu\text{m}$ thickness


N in P, VTT production, <100> orientation, thickness of 675 µm or less,																
Oxide thickness		100 nm 200 nm														
P implantation doses	10 ¹³ c	°m⁻²	1014	cm ⁻²	1015	10 ¹⁵ cm ⁻² 10		cm ⁻²	10 ¹³ cm ⁻²		10 ¹⁴ cm ⁻²		10 ¹⁵ cm ⁻²		10 ⁶ cm ⁻²	
Implantation energy (keV)	130	250	130	250	130	250	130	250	130	250	130	250	130	250	130	250
Annealing		3hours, 1000 °C (1h annealing + 1h wer oxidation +1h dry oxidation)														

✓ $\rho > 4 k\Omega/cm (1.1 x 10^{12}) - 525 \mu m$ thickness

✓ $\rho = 0.2 - 0..25 \Omega$ /cm (2.5 – 3 x 10¹⁶) – 675µm thickness

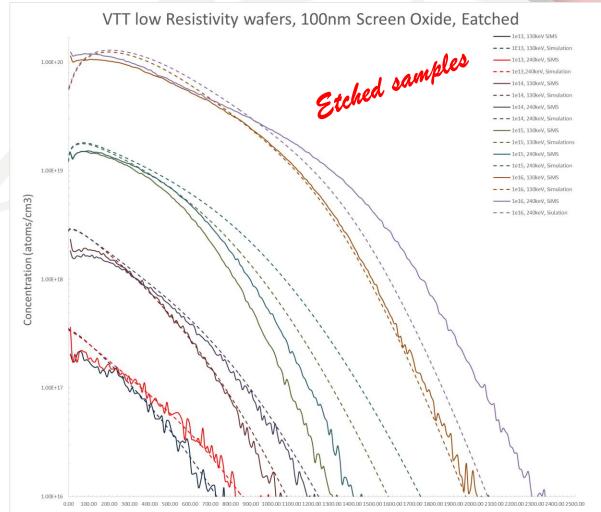
$\rho = 0.25 \Omega/cm (3 \times 10^{16}/cm^3) 380 \mu m$ thickness (n in n)

- 1. Synopsys MC CrystalTRIM full cascade simulator
- 2. Final oxide layer etching step implemented
- 3. Normal thermal annealing for implant activation
- Overall good agreement for low doses
- Pronounced deviations of depth concentration for high doses
- Surface dose agreement for all samples
- Evidence of important surface effects for high dose wafers

Simulated doping profiles

$\rho = 0.25 \Omega/cm (3 \times 10^{16}/cm^3) 380 \mu m$ thickness (n in n) stehed

CiS low Resistivity wafers, 100nm Screen Oxide - Simulation 1.00E+21 1e13, 130keV, Non-Eatched 1E13, 130keV, Eeatched 1e13 240keV Non-Eatched 1e13.240keV. Eatched 1e14, 130keV, Non-Eatched 1e14, 130keV, Eatched - 1e14. 240keV, Non-Eatched 1.00E+20 1e14, 240keV, Eatched - 1e15, 130keV, Non-Eatched – – 1e15, 130keV, Eatched 1e15, 240keV, Non-Eatched - 1e15, 240keV, Eatched Concentration (atoms/cm3) 1e16, 130keV, Non-Eatched – – 1e16, 130keV, Eatched 1.00E+19 1.00E+18 1.00E+17 1.00E+16 0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00 1100.00 1200.00 1300.00 1400.00 1500.00 1600.00 1700.00 1800.00 1900.00 2000.00 Depth (nm)


Etched and Non-etched simulations

- Investigation of the deposited implant on the oxide layer
- Measurements through the silicon oxide under way
- Simulations show a 300nm displacement with no modification of the dopant concentration distribution
- Provide insight for disagreement between simulation – SiMS and the quantity of implant trapped at the oxide layer
- High Resistivity wafer measurements under way, simulations show no variation of profile distribution

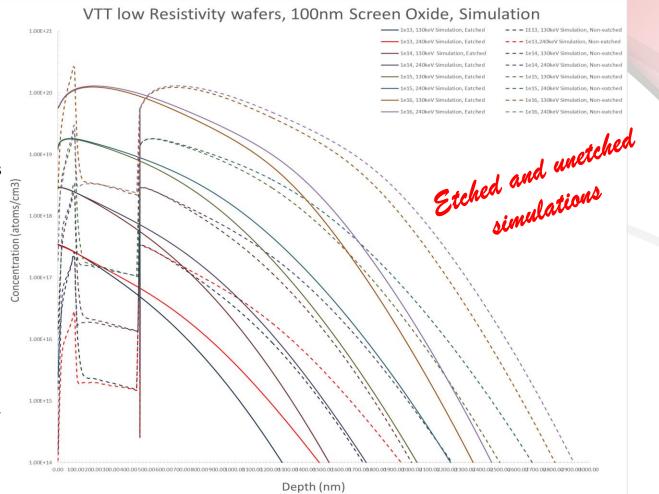
$\rho = 0.25 \Omega/cm (3 \times 10^{16}/cm^3) 675 \mu m$ thickness (n in p)

- Simulations have been displaced towards 0 to compensate for oxide growth
- Advacam uses annealing through oxidation
- Dry + wet oxidation that really 'eats-up' dopant
- Oxide removed for SiMS
- Simulated oxide diffusion and complete oxidation

Depth (nm)

13

Doping profile Simulations

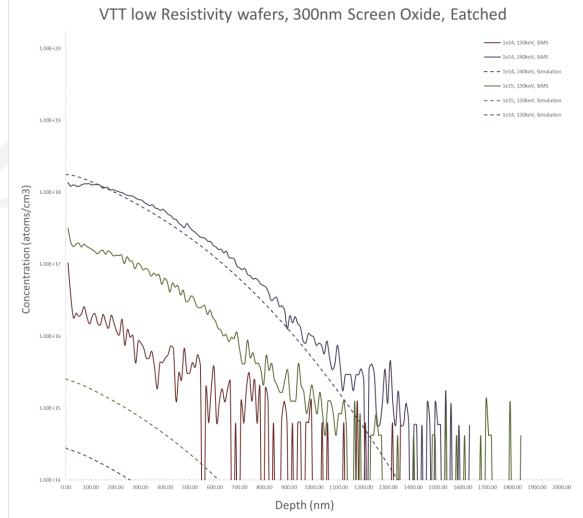

$\rho = 0.25 \ \Omega/cm (3 \ x 10^{16}/cm^3) \ 675 \mu m \ thickness \ (n \ in \ p)$ $VTT \ low \ Resistivity \ wafers, 100 nm \ Screen \ Oxide, \ Simulation \ Screen \ Screen$

 Overall good agreement on the low and intermediate doses

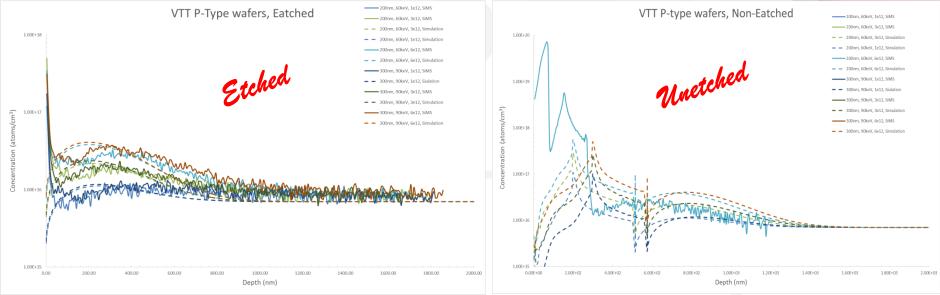
- Disagreement on the profile distribution for the higher- intermediate doses but almost perfect agreement for one of the highest ones
- Deviation trend between simulation – SiMS exhibits contradicting behavior

Wafer – annealing uniformity??

 No difference expected for etched – non-etched samples



$\rho = 0.25 \Omega/cm (3 \times 10^{16}/cm^3) 675 \mu m$ thickness (n in p)

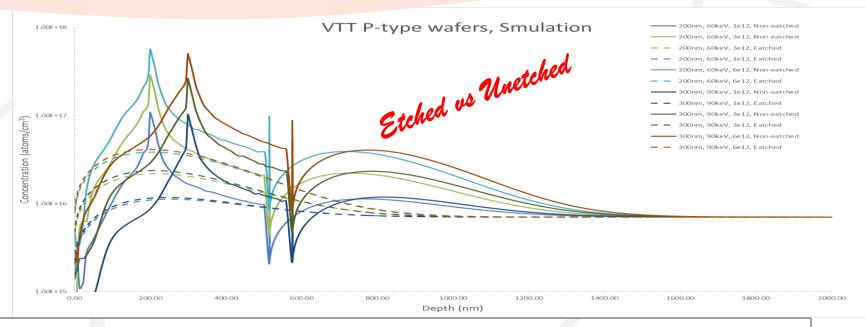

- 300nm screen oxide used
- Same parameters as in the 100 nm screen oxide case
- Lower dose in the limits of measurements

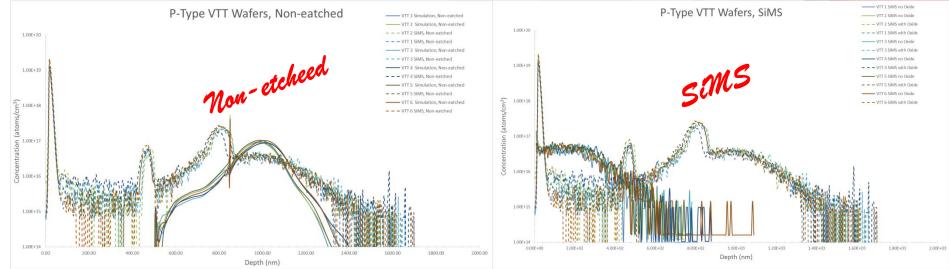
More pronounced deviations between SiMS and simulations with good agreement for the high dose

ADVACAM p spray Calibration Wafers

N in P, VTT production, <100> orientation

Oxide thickness		200nm		300nm					
P implantation doses	1X10 ¹² cm ⁻²	3X10 ¹² cm ⁻²	6X10 ¹² cm ⁻²	1X10 ¹² cm ⁻²	3X10 ¹² cm ⁻²	6X10 ¹² cm ⁻²			
Implantation energy		60 KeV	,	90 KeV					
Annealing	3hours, 1000 °C								


 $\checkmark \rho = 2 \Omega/cm (7 \times 10^{15}) - 380 \mu m$ thickness


Doping profile Simulations

ADVACAM p spray Calibration Wafers

- ✓ p-Spray was performed on low resistivity wafers, at the limit of measurement accuracy
- ✓ 200nm displacement between simulated and measured profile
- \checkmark Through oxide measurements exhibit same behavior
- Quantitavely good agreement, displacement issue needs further investigation

VTT p spray Calibration Wafers

N in P, VTT production, <100> orientation

Oxide thickness	355nm									
P implantation doses		1.8X10	2X10 ¹² cm ⁻²							
Implantation energy	1401	KeV	150	keV	90 KeV					
Annealing	150min, 900 °C	60min, 950 °C	150min, 900 °C	60min, 950 °C	150min, 900 °C	60min, 950 °C				

✓ $\rho = 4 \text{ k}\Omega/\text{cm}$ (1.1 x 10¹²) – 525µm thickness

Simulated doping profiles

Conclusions

- ✓ In CiS wafers the simulated implant depth is much less than the SiMS measured one. Effect significantly remarkable in high dose
- ✓ In VTT P-Spray wafers there is a displacement of the simulated curves to compensate for the oxide growth which is later etched. Displacement is in the order of 200nm
- VTT n-implanted wafers present same implant depth divergence as VTT wafers with a less effect.
 More detailed information needed in terms of oxide growth recopies and temperatures
- ✓ 300 nm VTT wafers have very low doses, not well simulated

CiS Collaboration Structures

Varied Bias rail geometry structures

- □ FEI4 compatible structures with classic IBL geometry
- Bias rail position varies between different columns of the matrix
- Metallization is removed in certain regions
- Bias dot moved from pixel edge towards center
- Several geometries in a single matrix
- Two standard matrices from same production and wafer were also acquired for reference

Diced structures with NI-Ag UBMS

FIB Imaging

2 µm

Signal A = SE2

EHT = 1.80 kV

FIB Probe = 30KV:50 pA

FIB Lock Mags = No

tage at T = 50.0

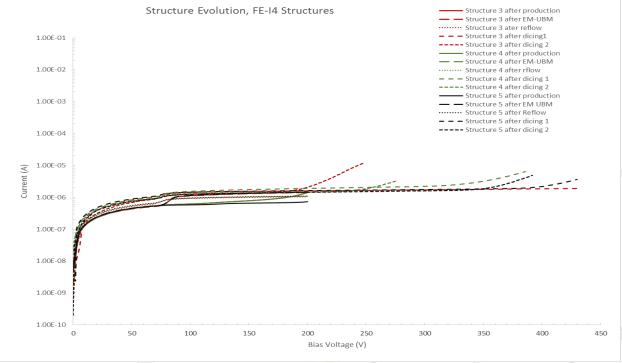
Noise Reduction = Pixel Ava

Tilt Corm. = Off

330873/04 nach LIBM

15 Oct 2013

8:26:42

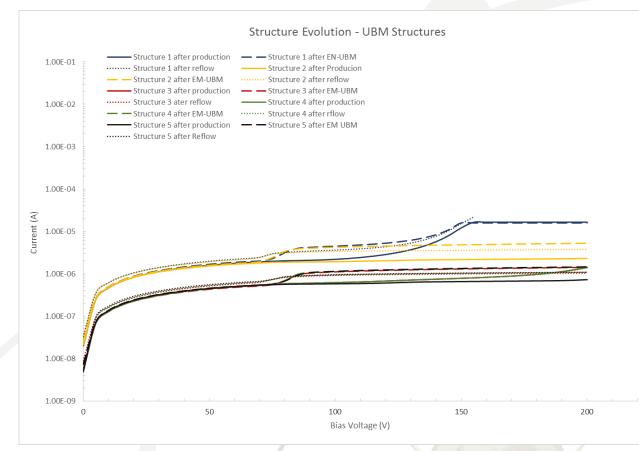

R

Dun Au

200am Ne 40am Ne 2: 21-22 Man

CiS Collaboration Structures

IV curves – Breakdown Voltages



- ✓ Breakdown Voltages in order of 430 V for standard structures, decreased to around 250V 11 days afterwards
- ✓ Higher Breakdown voltages for modified structures
- ✓ UBMs already integrated
- Diced and thermal treated structures

10 minutes reflocu at 180°C

CiS Collaboration Structures

IV curves – Breakdown Voltages

- After production structures exhibit normal behavior
- ✓ After UBM deposition leakage current increases and an subnormal bump appears in the IVs
 ✓ Reflow
 - compensates for the bump and decreases leakage but still present

Further Reflow effect??

•Futer Plans

Simulations – Tests - Bounding

- Investigate evolution of dopping profiles after irradiation and compare SiMS measurements in irradiated samples with simulation
- Investigate surface and calibration effects for the SiMS measurements
- Validate SiMS for VTT and complete simulation input for new production
- Irradiate variant bias rail geometry structures and test efficacy before and after irradiation

THANK YOU FOR YOUR ATTENTION!!