Alien and GSI

Marian lvanov

I Outlook

» GSI experience
. Alien experience
> Proposals for further improvement

GSI| - SE

1 Goal - Central data transfer — mirroring
Working ~ 20 Thy of data at GSI SE
Missing part ?
Central strategy of data cleaning
» Current status (SE is almost full, 20 out of 27 Tbhy used)
Central data management (on level of one SE)
» How to check data volume — The data registered using cryptic
physical names
s Creating file list (per SE) — eg find -SE GSI::SE yyy xxx
« Zombie files?
» Quotas per user?

GSI SE

Aggregate Data Throughput Rate
for Parallel Analysis Jobs("train of tasks")

36v76
29‘;56
21V87
19,88
4 i #1854 19,19 18,08
L 11,05 10,83 10,75
12,88
I I I 1
1 2 4 6 8
parallel jobs

== |ocal disk data
= omote data
data on lustre

Extensive test of IO configuration performed
at GSI (Mischa Zynovyev, see next
presentation)

Test Example: Difference in speed between
parallel jobs (train of tasks) processing local
data, parallel jobs processing data from remote
fileserver, and parallel jobs processing data from
Lustre cluster. One analysis job (“train of tasks”)

processes 10000 files of 100 events each.

GS| - CE

GSI farm — biggest part 8 core machine
Sharing:
s GRID-ALIEN
s Batch
» Proof
Optimal configuration
» 1-2 slots per 10 intensive jobs — currently PROOF
» Other - CPU intensive — Simulation, reconstruction
Analysis jobs (I0) vs Simulation and MC Reconstruction (CPU)
s Is it possible to regulate ratio between 10 and CPU intensive jobs ?
Reconstruction job using of Raw data (IO or CPU)

I Grid experience

» What can go wrong (with non zero probability) will go wrong
» Input data (temporally) not accessible (staged)
s Output SE (temporally) not accessible
» Not proper environment on Computing elements (impossible to
compile macro, par files)

» + Other run type errors
a +

Grid stability

» Input data access
» Dynamic staging — Part of data available on “official” web site is not
available anymore
» SE —temporary not available (e.g. planned maintance)
» Part of the SE not available (e.g. One file server not responding -
GSI problem in February)
» De synchronization in the File catalog (e.g. change of the File server
name — current problem at GSI)
» Warning example
» If jobs use the n input files and probability that file is not accessible is

X, than probability that your job do not crash is
s p(n,x) = (1-x)n
» 100 jobs, 1% ==> 36%

Grid stability

Condition changes dynamically in time
o Goal — Get the status of components needed for jobs at the moment
closest to the actual execution time
s Optimally during job splitting
Conseqguences
» Gain — No waste of computing resources

» More resources for Job splitter - negligible
. The time to check orders of magnitude smaller than actual computation time

This way the user-developer will be aware of possible problems
(feedback time ~ minute(s)) and can react without waiting for the

jobs to fail on the worker nodes.
» The fraction of available data should be a parameter in a jdl file

=

2

Proposal — Job submission
algorithm (0)

1. Linear loop over file list
» Check availability of files
» Make a list of computing elements (CE) close to the available data
2. Linear loop over selected CE
» Check the environment for given type of job
» Select allowed, forbidden CE
Split input list to the 2 list
» Available, Non available
» Optionally, provide both lists to the user
Continue with default splitting

Proposal — Job submission
algorithm (1)

» How to develop an algorithm

» 1 phase
s Use preprocessing scripts for JIDL+xml (input data and output SE
availability)
» New information needed in jdl -pre validation script to check

environment before submitting actual job
» The pre validation scripts (without data input) have to have priority
s At minimum try to compile and use general HalloWorld.par

» 2 phase
» Integration of tested algorithm to the Job splitter

