
FairRootFairRoot
Build and Test SystemBuild and Test Systemyy

Mohammad Al-Turany (IT-GSI)
D i B ti i (IT GSI)Denis Bertini (IT-GSI)

Florian Uhlig (IT/CBM-GSI)

OutlineOutline

• What did/do we use.
• CMake

E l• Examples
• CTest/Dashboard

28.04.2008 FAIR-Alice Workshop 2

History/MotivationHistory/Motivationyy

• Start with self written Makefiles
– Need work when porting to another platform

• Autotools (autoconf automake etc)• Autotools (autoconf, automake, etc.)
– Standard for *ix systems
– Easy to use for user (./configure && make && make install)
– Different macro languages for different tools in chain
– „Autohell“ if there is a problem, even a blank character at the

wrong position
– No test system

• Cmake/Ctest/Dashboard

28.04.2008 FAIR-Alice Workshop 3

Cmake Cmake -- What is it?What is it?
• Open sorce project (BSD style license)
• Family of tools to build, test and package softwarey , p g
• Meta build tool generates input for native tools

– UNIX Makefile
– XcodeXcode
– Visual Studio 6,7,8,9 IDE files
– KDevelop

Eclipse– Eclipse
• Who is using it?

– KDE, Scribus, SecondLife, ITK,VTK, FairRoot ;-)
Wh i b hi d C k• Who is behind Cmake
– Kitware, Los Alamos National Labs, Sandia National Labs,

National Library of Medcine, NAMIC

28.04.2008 FAIR-Alice Workshop 4

CMake FeaturesCMake Features
• Support complex custom commands

– Generate code during build process which is then compiled
(e g rootcint)(e.g. rootcint)

– RuleChecker
– Doxygen

• Optional component support (turn on/off features)Optional component support (turn on/off features)
• Shared library and DLL support (version support)
• Single and simple input format for all platforms
• Automatic dependency generation (C C++ Fortran)• Automatic dependency generation (C, C++, Fortran)

– Full dependencies: build a target in one directory, and everything
this target depends on will be up to date

• Parallel builds (if supported by the native tool e.g. gmake -j4)(pp y g g j)
• Out of Source builds
• Linux, Mac OS X, SunOS, HPUX, IRIX, Windows, etc.
• Simple marco language

28.04.2008 FAIR-Alice Workshop 5

p g g
• Only depends on compiler and native build tool

Cmake Features (cont.)Cmake Features (cont.)()()
• Color and progress output for make
• Automatic rerun of cmake if any cmake input file changey p g
• Graphviz output for visualization of dependency trees
• Works with parallel make and on build farms
• make help shows all possible targets in the directory
• make foo.o build only foo.o and everything foo.o depends on
• CMake has a GUI layer for easy editing of input variablesCMake has a GUI layer for easy editing of input variables
• CMake has a command line interface
• Cross compiling support (CMake 2.6)

28.04.2008 FAIR-Alice Workshop 6

Hello world example for physicistsHello world example for physicistsp p yp p y
#CMakeLists.txt for simple test program
project(Tutorial)
add_executable(Tutorial tutorial.cxx)

/ A simple program that computes the square root of a number
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main (int argc, char *argv[])
{
if (argc < 2)if (argc 2)
{
fprintf(stdout,"Usage: %s number\n",argv[0]);
return 1;

}
double inputValue = atof(argv[1]);double inputValue = atof(argv[1]);
double outputValue = sqrt(inputValue);
fprintf(stdout,"The square root of %g is %g\n",

inputValue, outputValue);
return 0;

}

28.04.2008 FAIR-Alice Workshop 7

}

If live demo failsIf live demo fails

28.04.2008 FAIR-Alice Workshop 8

Main config file for CbmRoot Main config file for CbmRoot gg
Check if cmake has the required version
CMAKE_MINIMUM_REQUIRED(VERSION 2.4.3 FATAL_ERROR)

Set name of our project to "CBMROOT". Has to be done
after check of cmake version
project(CBMROOT)

find_package(ROOT REQUIRED)
find_package(PLUTO REQUIRED)
find_package(GENERATORS REQUIRED)
find_package(GEANT3 REQUIRED)
find_package(GEANT4)
find_package(GEANT4VMC)

project(CBMROOT)

where to look first for cmake modules, before ${CMAKE_ROOT}/Modules/
is checked
set(CMAKE_MODULE_PATH "${CMAKE_SOURCE_DIR}/cmake/modules")

Load some basic macros which are needed later on
include(CbmMacros)

find_package(CLHEP)
find_package(RuleChecker)

Set the library version in the main CMakeLists.txt
SET(CBMROOT_MAJOR_VERSION 0)
SET(CBMROOT_MINOR_VERSION 0)
SET(CBMROOT_PATCH_VERSION 0)
SET(CBMROOT_VERSION
"${CBMROOT_MAJOR_VERSION}.${CBMROOT_MINOR_VERSION}.${CBMROOT_PATCH_VERSION}")

$include(WriteConfigFile)
include(Dart)
include(CheckCompiler)

#Check the compiler and set the compile and link flags
Check_Compiler()

Check if the user wants to build the project in the source

SET(CBMROOT_LIBRARY_PROPERTIES ${CBMROOT_LIBRARY_PROPERTIES}
VERSION "${CBMROOT_VERSION}"
SOVERSION "${CBMROOT_MAJOR_VERSION}"

)

Recurse into the given subdirectories. This does not actually
cause another cmake executable to run. The same process will walk through
the project's entire directory structure.
add_subdirectory (base)p j

directory
CHECK_OUT_OF_SOURCE_BUILD()

Check if we are on an UNIX system. If not stop with an error
message
IF(NOT UNIX)

MESSAGE(FATAL_ERROR "You're not on an UNIX system. The project was up
to now only tested on UNIX systems so we break here If you want to go on

...
add_subdirectory(zdc)

if(GEANT4_FOUND AND GEANT4VMC_FOUND AND CLHEP_FOUND)
add_subdirectory (cbmg4)

endif(GEANT4_FOUND AND GEANT4VMC_FOUND AND CLHEP_FOUND)

Option(BUILD_DOXYGEN "Build Doxygen" OFF)
if(BUILD_DOXYGEN)to now only tested on UNIX systems, so we break here. If you want to go on

please edit the CMakeLists.txt in the source directory.")
ENDIF(NOT UNIX)

IF(NOT DEFINED ENV{SIMPATH})
MESSAGE(FATAL_ERROR "You did not define the environment
variable SIMPATH which is nedded to find the external packages.

Please set this variable and execute cmake again.")

(_)
MESSAGE(STATUS "*** Building the Doxygen documentaion ***")
ADD_SUBDIRECTORY(doxygen)

endif(BUILD_DOXYGEN)

If(RULE_CHECKER_FOUND)
ADD_CUSTOM_TARGET(RULES

COMMAND ${RULE_CHECKER_SCRIPT1} ${CMAKE_BINARY_DIR} viol > violations.html)
ENDIf(RULE_CHECKER_FOUND)

28.04.2008 FAIR-Alice Workshop 9

ENDIF(NOT DEFINED ENV{SIMPATH})
CHECK_EXTERNAL_PACKAGES_INSTALLATION()

WRITE_CONFIG_FILE(config.sh)
WRITE_CONFIG_FILE(config.csh)

Template for subprojectTemplate for subprojectp p jp p j
Create a library called "lib<name>" which includes the source files given in
the array .
The extension is already found. Any number of sources could be listed here.

set(INCLUDE_DIRECTORIES
${ROOT_INCLUDE_DIR}
${CBMROOT_SOURCE_DIR}/geobase
...
)

include_directories(${INCLUDE_DIRECTORIES})

set(LINK_DIRECTORIES
${ROOT_LIBRARY_DIR}
)

link_directories(${LINK_DIRECTORIES})

set(<name>_SRCS
Source_File_1.cxx
....
)

If(RULE CHECKER FOUND)If(RULE_CHECKER_FOUND)
CHECK_RULES(„${<name>_SRCS}“ „${INCLUDE_DIRECTORIES}“ TRD_RULES)

endIf(RULE_CHECKER_FOUND)

fill list of header files from list of source files
by exchanging the file extension
CHANGE_FILE_EXTENSION(*.cxx *.h <name>_HEADERS "${<name>_SRCS}")

set(<name>_LINKDEF <name>LinkDef.h)
set(<name>_DICTIONARY ${CMAKE_CURRENT_BINARY_DIR}/<name>Dict.cxx)

ROOT_GENERATE_DICTIONARY("${<name>_HEADERS}" "${<nmae>_LINKDEF}" "${<name>_DICTIONARY}" "${INCLUDE_DIRECTORIES}")

set(<name>_SRCS ${<name>_SRCS} ${<name>_DICTIONARY})

add_library(<name> SHARED ${<name>_SRCS})
target_link_libraries(<name> ${ROOT_LIBRARIES})

t t t ti (< > PROPERTIES ${CBMROOT LIBRARY PROPERTIES})

28.04.2008 FAIR-Alice Workshop 10

set_target_properties(<name> PROPERTIES ${CBMROOT_LIBRARY_PROPERTIES})

################ install ###################
install(TARGETS <name> DESTINATION ${CMAKE_BINARY_DIR}/lib)

MacrosMacros

MACRO (ROOT_GENERATE_DICTIONARY INFILES LINKDEF_FILE OUTFILE INCLUDE_DIRS_IN)

set(INCLUDE_DIRS)

foreach (_current_FILE ${INCLUDE_DIRS_IN})
set(INCLUDE_DIRS ${INCLUDE_DIRS} -I${_current_FILE})

endforeach (_current_FILE ${INCLUDE_DIRS_IN})

STRING(REGEX REPLACE "^(.*)\\.(.*)$" "\\1.h" tmp "${OUTFILE}")
SET (OUTFILES ${OUTFILE} ${ })SET (OUTFILES ${OUTFILE} ${tmp})

ADD_CUSTOM_COMMAND(OUTPUT ${OUTFILES}
COMMAND ${ROOT_CINT_EXECUTABLE}
ARGS -f ${OUTFILE} -c -DHAVE_CONFIG_H ${INCLUDE_DIRS} ${INFILES} ${LINKDEF_FILE} DEPENDS ${INFILES})

ENDMACRO (ROOT_GENERATE_DICTIONARY)

28.04.2008 FAIR-Alice Workshop 11

Why test? Why test? yy

• If it is not tested, it does not work !
• With good testing global changes are much easier and

saversaver
• Large code base ist to large/complicated for a single

developer to understand and maintain
Id tif bl h th• Identify problems when they occor

• FairRoot depends on external packages which can cause
problems

• Direct feedback for the developers as they experiment
with new features

28.04.2008 FAIR-Alice Workshop 12

How to test?How to test?

• Use CTestUse CTest
• Tests are easy to set up

– Add enable_testing() in main CMakeLists.txt
– add test(name executable arg1 arg2 ...)add_test(name executable arg1 arg2 ...)

• Run make test in build directory
• Use ctest (shipped with cmake) to run tests
• Run tests on all supported platformsRun tests on all supported platforms
• Show results of tests on dashboard
• We run root marcos as test

– add test(run sim ${ROOTSYS}/bin/root -b -ladd_test(run_sim ${ROOTSYS}/bin/root b l
${CBMROOT_SOURCE_DIR}/macro/run/run_sim.C)

28.04.2008 FAIR-Alice Workshop 13

Automatic testsAutomatic tests

• Update source from SVN repository
• Configure project

G t M k fil• Generate Makefiles
• Build the project
• Run the tests
• Submit results to a webserver (Dashboard)

– Run make Experimental/Nightly in build directory
R th h i t ti ll if th i it t th• Run the chain automatically if there is a commit to the
repository

28.04.2008 FAIR-Alice Workshop 14

Automatic tests (cont.)Automatic tests (cont.)()()

SVN maintains
source code revision

CTest/CMake compiles
and test the newlysource code revision and test the newly
commited source code
on distributed clients

Typical developer
h k i dchecks in code

Developer
reviews the

lt

28.04.2008 FAIR-Alice Workshop 15

results

DashboardDashboard
• Client/Server architecture

– Test on all platforms available to users
– User use scripts to run the test and submit only results

• Different tests
– Experimental

• No update from repository
• Usefull to test code before commit

– Nightly
• Update from repository with given timestamp
• All machines should run with the same code base

– Continuous
Should run whenever there is a change in the repository• Should run whenever there is a change in the repository

– Coverage/MemCheck
• Check the code coverage of the tests
• Runs valgrind to check for memeory leaks

28.04.2008 FAIR-Alice Workshop 16

Runs valgrind to check for memeory leaks

Dashboard

Dashboard (how it looks like)Dashboard (how it looks like)()()

28.04.2008 FAIR-Alice Workshop 17

Dashboard (cont.)Dashboard (cont.)()()

28.04.2008 FAIR-Alice Workshop 18

Rule CheckerRule Checker

28.04.2008 FAIR-Alice Workshop 19

Summary and OutlookSummary and Outlookyy
• CMake/Ctest/Dashboard has all features we need
• Easy to extend to our needs (e.g. RuleChecker)y (g)
• Everything is Open Source and can be changed if needed

• Use SVN to trigger Continuous build of project
• Use CDash (successor of Dashboard)

– Php scripts which run on a webserverPhp scripts which run on a webserver
– Mysql database
– More functionality

• Send email to developer who breaks the dashboard• Send email to developer who breaks the dashboard
• Better administrative tools

• Implement Coverage tests/Memory checks

28.04.2008 FAIR-Alice Workshop 20

• Try to incorporate the RuleChecker in CDash

