

Status of Geant4 VMC in FairRoot - Stefano Spataro

Status of Geant4 VMC in FairRoot

Stefano Spataro

... or better...

What PANDA has learnt from VirtualMC

Status of Geant4 VMC in FairRoot - Stefano Spataro

Overview

- > Why Geant4 VMC in PandaRoot?
- > Software release
- > Installation issues
- > Geometry and transport
- > Physics results
- > CPU Performances

Status of Geant4 VMC in FairRoot - Stefano Spataro

Why Geant4 in PandaRoot?

The PANDA collaboration strongly pushed to use Geant4

since the "birth" of PandaRoot

not CBM Geant3

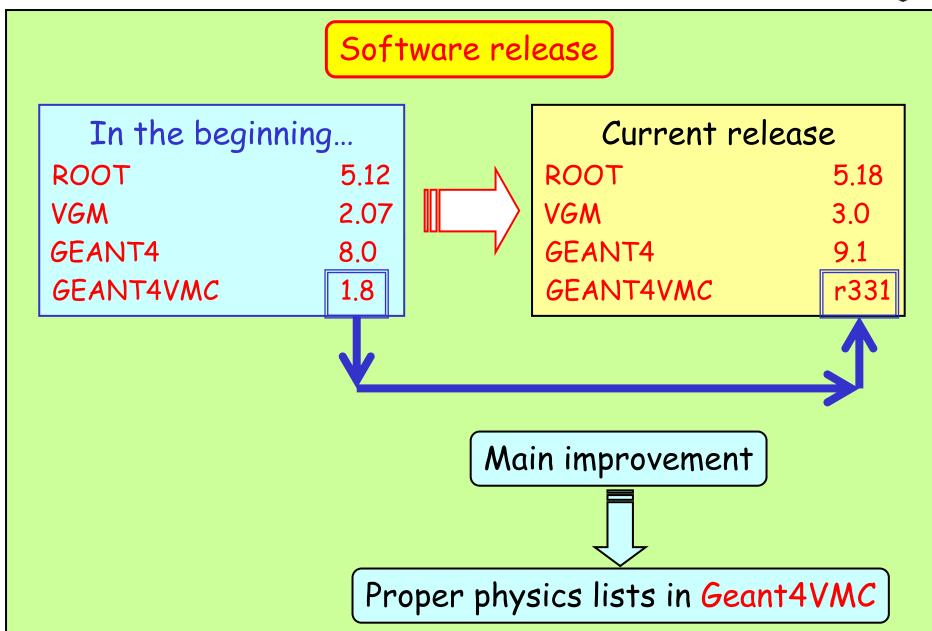
Known issues of Geant4

- > slower than Geant3
- > still under development
- > must be tuned (physics lists)

... several reasons...

Many people think: "Geant4 is cool, Geant3 is bad"

Previous data analysis done with G4



TPR
Physics booklet

Results comparison is required

Status of Geant4 VMC in FairRoot - Stefano Spataro

Installation issues

All the external packages come in a tar file

GEANT3/GEANT4 ROOT/VMC

installation by one single configuration script

the user should only:

- > download the tar ball
- > unpack it
- > launch one single script
- > take a coffee (maybe many)
- > cross the fingers

missing graphical libraries

libXm, openGL, Motif, wxGTK

- > everything compiles
- analysis does not run (missing libs)

Loading Geant4 granular libraries ...

Error in <TUnixSystem::DynamicPathName>: libG4OpenGL[.so | .sl | .dl | .a | .dll] does not exist

Status of Geant4 VMC in FairRoot - Stefano Spataro

Geometry and transport

Exactly the same geometry file / same media definition

fRun->SetName("TGeant3");

```
void SetCuts()
{
  cout << "SetCuts Macro: Setting Processes.." <<endl;

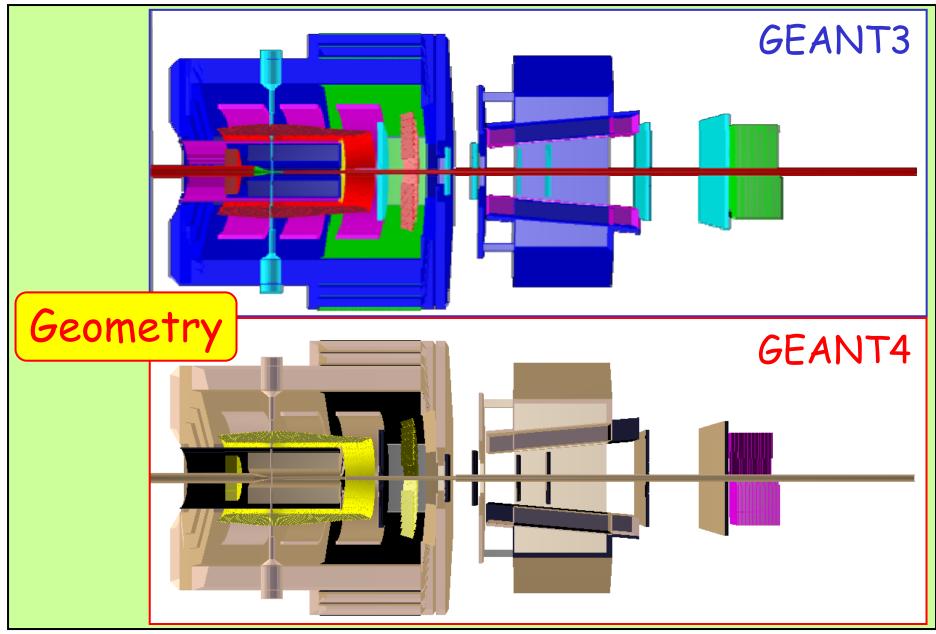
gMC->SetProcess("PAIR",1); /** pair production*/
  gMC->SetProcess("COMP",1); /**Compton scattering*/
  ...
  Double_t cut1=1.0E-3; //GeV

  cout << "SetCuts Macro: Setting cuts.." <<endl;

gMC->SetCut("CUTGAM",cut1); /** gammas (GeV)*/
  gMC->SetCut("CUTELE",cut1); /** electrons (GeV)*/
  ...
}
```

```
fRun->SetName("TGeant4");
```

new TG4RunConfiguration ("geomRoot", "QGSP_BERT_EMV+optical", "specialCuts");


to set physics lists

(in theory)
the same physics cuts

G4: conversion from energy \rightarrow range

Status of Geant4 VMC in FairRoot - Stefano Spataro

Using exactly the same geometry file/same media definition

fRun->SetName("TGeant3");

Everything OK

fRun->SetName("TGeant4");

strange warnings

Info in <TGeoShapeAssembly::DistFromInside>:

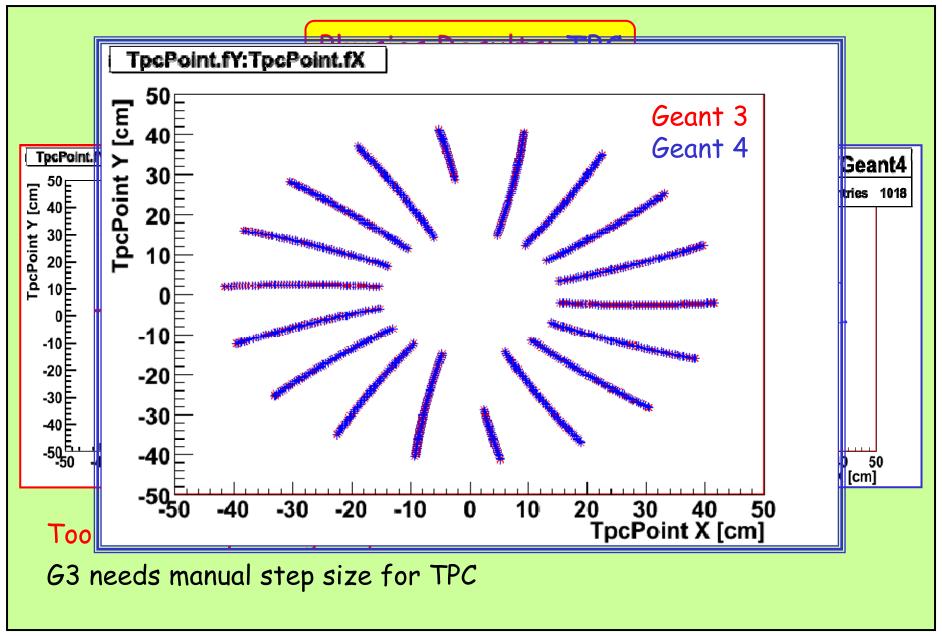
Cannot compute distance from inside the assembly (but from a component)

No physical volume found at track vertex: (927.786,21176.1,28363.8)

++++ TG4Warning: ++++

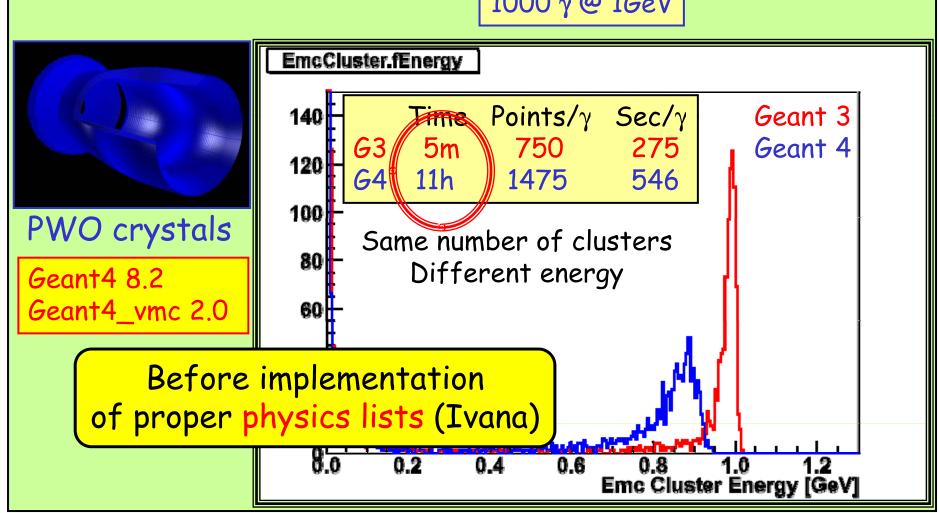
TG4TrackingAction::UserProcessHits:

Cannot locate track vertex.


++++++++++++++++++++

G4

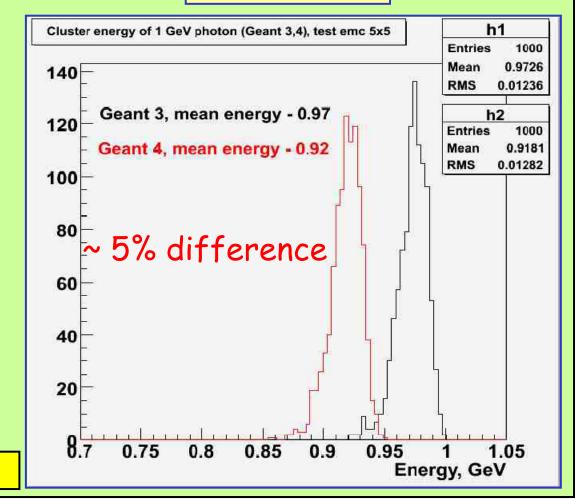
What is happening?



Status of Geant4 VMC in FairRoot - Stefano Spataro

Past Physics Results: EMC photons (clusters)

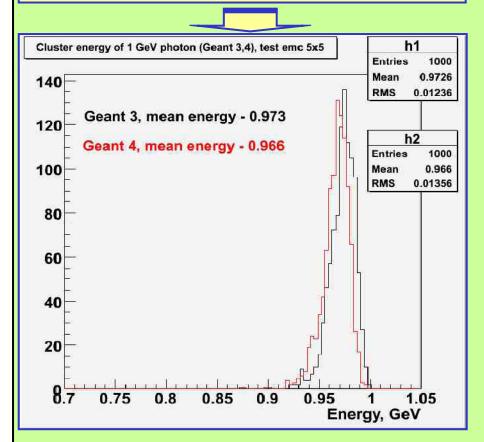
1000 γ @ 1GeV


Current Physics Results: EMC photons (clusters)

Geant4 9.1 Geant4_vmc r331 emStandard

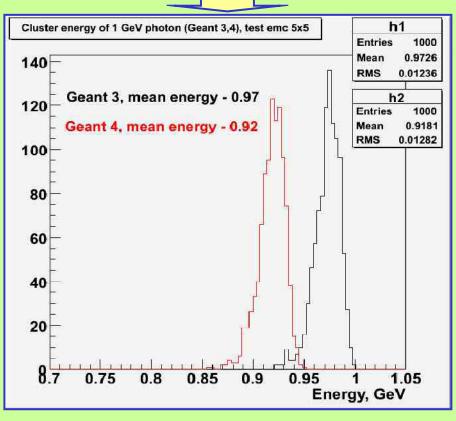
Work done by Dima Melnichuk

1000 γ @ 1*G*eV



Status of Geant4 VMC in FairRoot - Stefano Spataro

Current Physics Results: EMC photons (clusters)


new TG4RunConfiguration

("geomRoot", "emStandard")

new TG4RunConfiguration

("geomRoot", "emStandard", "specialCuts")

Work done by Dima Melnichuk

Status of Geant4 VMC in FairRoot - Stefano Spataro

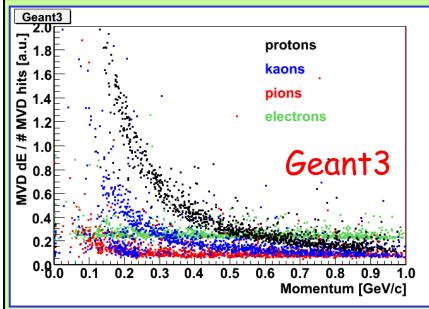
Current Physics Results: EMC photons (clusters)

```
1000 γ @ 1GeV
```

dependence on CUTELE

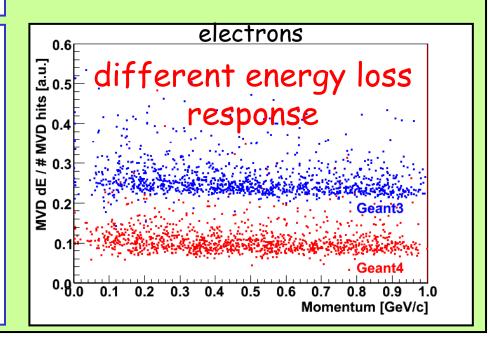
```
void SetCuts()
{
    ...
    gMC->SetCut("CUTELE",cut1); /** electrons (GeV)*/
    ...
}
```

CUTELE	Mean Energy
10 MeV	0.9343 GeV
1 MeV	0.9181 GeV
0.1 MeV	0.9219 GeV
0.01 MeV	0.9234 GeV
0.1 keV	0.9240 GeV


G4 problems with specialCuts not connected to CUTELE

Work done by Dima Melnichuk

Status of Geant4 VMC in FairRoot - Stefano Spataro


Geant4 7:0 1.8 \$1.6 \$1.6 \$1.6 \$1.6 \$1.0

Physics results: MVD

thin silicon layers $\sim 300 \mu m$


new TG4RunConfiguration
("geomRoot", "QGSP_BERT_EMV")

no G4 specialCuts

Status of Geant4 VMC in FairRoot - Stefano Spataro

Full geometry: MVD+TPC+DIRC+TOF+EMC+DCH+MUON

Dual Parton Model event generator: $\overline{p}p @ 2GeV/c$

fRun->SetName("TGeant3");

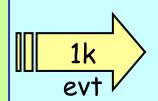
init

CPU Time: 12.5 s

1k evt CPU Time: 1434.5 s

File Size: 195 Mb

fRun->SetName("TGeant4");


CPU Time: 53.8 s

CPU Time: 9661.9 s

File Size: 195 Mb

Enabling G4 specialCuts

CPU Time: 3918.8 s

File Size: 74 Mb

28 April 2008 – ALICE-FAIR Computing Meeting, GSI Status of Geant4 VMC in FairRoot - Stefano Spataro

Conclusions

- VirtualMC is a powerful tool used successfully by PandaRooters
- > Geant4 VMC is running and tested under several physics cases

VirtualMC allows us to crosscheck the detector response even to estimate the "quality" of our code

- > The specialCuts implementation needs improvements
- > A better understanding of our cuts is mandatory