

 1

WLCG Addendum to the SRM v2.2
Memorandum of Understanding

To: CCRC’08 Storage Solutions Working Group

From: Flavia Donno

Date: 4/14/2008

Version: 0.3

Comments: A. Frohner, G. Oleynik, D. Smith, T. Perelmutov

Purpose of this document

This note summarizes the agreed client usage and server behavior for the SRM v2.2 implementations
used by WLCG applications. The agreement encompasses the clients:

• FTS
• GFAL
• lcg-utils
• dCache srm clients

and storage providers:

• CASTOR
• dCache
• DPM
• StoRM

The agreement shall be focused on meeting the LHC experiments’ requirements for Grid storage
interfaces. The note specifies how the various existing methods and data objects, as they are specified
in the agreed v2.2 specification [1], should be interpreted and/or extended in order to meet the LHC
requirements. The outlined WLCG interpretation of the interfaces may suggest sometimes a more
restrictive or extended use of the specification than other implementations of SRM client and servers
although care is taken to preserve interoperability with the latter.

D R A F T

 April 14, 2008

 2 D R A F T

The document also specifies what is required in the medium-term (May 2008) and what is required in
the long-term.

This document is open for discussions/corrections/comments/addition.

 April 14, 2008

 3 D R A F T

1. WLCG SRM data model interpretation agreement

In what follows, we detail the interpretation of the SRM v2.2 concepts that were found to be
controversial during the experience acquired operating an SRM v2.2 based Grid infrastructure.

1.1 The SRM space
Definition: An SRM space is a logical view of an online physical space allocation that is reserved for
read/write operations on files.

An SRM space is characterized by several properties:

• Retention Policy Information (Retention Policy and Access Latency)
• Owner
• Connection Type (WAN , LAN)
• Supported Operations (READ, WRITE, READ-WRITE)
• Supported File Access/Transfer Protocols
• Space Token
• Space Token Description (optional)
• Status
• Total Size
• Guaranteed Size
• Unused Size
• Assigned Lifetime
• Left Lifetime
• Client Networks

In WLCG spaces are statically reserved, although support for truly dynamic space reservation can be
provided by some implementations.

When a file is removed from a space, the space occupied by the file is returned back to the original
space allocation.

When a file is copied to tape and purged from disk, the space occupied by the file is returned back to
the original space allocation.

Only the owner of a space or the resource administrator can release the space.

The spaces can be read/write or read-write, writing into a read/stage space might have no meaning as
well as trying to read from a write only space can be impossible.

1.2 SRM files and copies
Definition: A file is a set of data with the properties defined on pag. 19 of [1], paragraph 2.25:

typedef struct {string path, // absolute dir and file path
 TReturnStatus status,
 unsigned long size, // 0 if directory
 dateTime createdAtTime,
 dateTime lastModificationTime,

 April 14, 2008

 4 D R A F T

 TFileStorageType fileStorageType,
 TRetentionPolicyInfo retentionPolicyInfo,
 TFileLocality fileLocality,
 string[] arrayOfSpaceTokens,
 TFileType type, // Directory or File

int lifetimeAssigned,
int lifetimeLeft, // on the SURL

 TUserPermission ownerPermission,
 TGroupPermission groupPermission,
 TPermissionMode otherPermission,
 string checkSumType,
 string checkSumValue,

TMetaDataPathDetail[] arrayOfSubPaths // optional recursive
} TMetaDataPathDetail

A file is furthermore characterized by a Site URL and by the space the file was first created into. This
space is referred to as the file master space that determines the characteristics of the file.

A file can have several copies in several spaces.

Definition: A copy of a file is a physical instance of the file in a given space. It is characterized by the
RequestID of the srm request that has generated the copy and by the properties defined on pag. 19 of
[1]. (The first copy of a file is referred to as the file primary copy.)

A copy of a file might have an associated transport URL (TURL). Such TURL has an associated pin-
lifetime. Multiple TURLs may refer to the same copy of the same file or to different physical copies
of the same file. A TURL is a user –guaranteed handle to the file. It is valid till its lifetime or
associated pin is not expired. If one of the TURLs associated to a copy of a file is released, the other
TURLs whose lifetime have not yet expired will continue to stay valid. A TURL is generated by the
system after an srmPrepareToGet or srmPrepareToPut request and might be associated to the request
that has generated it.

1.3 SRM handles
Definition: A SRM handle is a user-guaranteed transport specific URL (TURL) with associated pin-
lifetime and an online copy (existing or to be created) of a file in a space. A handle is always
associated to an SRM request. This expresses the characteristics of the space, a user-created one or
the default, where the copy of the file associated to the corresponding TURLs lays. A file handle is
characterized by the following properties:

• A string defining the file handle or TURL

• A handle lifetime

• The request ID of the SRM request generating the TURL. Possible requests are
srmPrepareToPut or srmPrepareToGet.

2. WLCG requirements

 April 14, 2008

 5 D R A F T

In this section we describe the experiment requirements that took to the definition of this Addendum
to the SRM v2.2 WLCG Mou. The requirements are listed in order of the priority given by the LHC
experiments, from the most important and more urgent to implement to the less urgent.

A. Protecting spaces from (mis-)usage by generic users
Some implementations do not allow at the moment to efficiently protect the spaces from
mis-usage by generic users. As an example, it is possible that a generic VO user releases the
space allocated to a VO. A request to read a file can trigger either a stage operation from
tape in pools dedicated to production activities or internal copies between pools with no
possibility to control such actions. These limitations apply especially to dCache and
CASTOR installations. Some attempt has been made to protect the storage resources but a
clean solution still is not available.

B. Full VOMS-awareness of the SRM implementations
Some SRM implementations such as dCache and CASTOR are still not VOMS-FQAN
aware at the authorization level. Even though authentication takes place at the SRM server
using GSI, VOMS-FQANs are not used for authorization. This creates problems in
managing the resources allocated to a VO and forces the use of specific proxies to execute
certain tasks.

C. Selecting spaces for read operations in srmPrepareToGet, srmBringOnline, and srmCopy
requests.
The SRM v2.2 WLCG MoU specifies that clients must not specify a token for read
operations. However, the document assumes silently that the file will be retrieved somehow
in a “right” place. The SRM servers at the moment implements different behaviors: dCache
serves the file from the place it was put, interfering with production operations; CASTOR
honors the token if passed to select the pool where the file should be read from. This makes
difficult the task to manage the space and to control the access. The possibility to specify a
token also for read operation should be given.

D. Correct implementation of srmGetSpaceMetaData
srmGetSpaceMetaData should return information about the space used and available (as
defined in [4]) for a given token description and possibly for the so-called “default” pool.
The default pool is used by those experiments who have decided not to use space tokens in
their operations. Should srmGetSpaceMetaData be used to retrieve the needed information
on space usage on the “default pool” or should another SRM method be introduced?

E. Providing the necessary information so that data could be efficiently stored on tapes.
It is absolutely important to efficiently store data on tape sets so that data can be retrieved
efficiently and minimizing the number of tape mounts to be executed. The SRM interface
and WLCG clients should allow applications to pass all necessary information to perform the
operation efficiently. Tokens should be passed to the tape backend as well as directory paths
and any other useful info.

 April 14, 2008

 6 D R A F T

 3. Some background on security

In this section we give some background information on VOMS groups and roles, VOMS FQANs
and VOMS FQAN based Access Control Lists. We would also like to point out to the document in
[3] where recommendations for changes in gLite authorization are given and suggestions on how to
implement security in Storage and Data Management.

3.1 VOMS Groups, Roles, and Access Control Lists
Every user is assigned a VOMS proxy when using the WLCG Grid. In the context of this document a
simple grid proxy is equivalent to a VOMS proxy with the (single) VO being the only extra attribute
(determined from a grid-mapfile). A proxy is first characterized by the Subject Distinguished Name
(DN), and can have extensions that define the privileges of the user holding that proxy at a given
moment. Please check [2] for details. Example DN:

(1) /DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=flavia/CN=388195/CN=Flavia Donno

To define the privileges of a user at a given moment, groups, subgroups, and roles can be defined. In
particular, a user can belong to multiple groups and sub-groups and have a number of roles at a given
time. Example of groups and roles:

(2) /dteam/Role=lcgadmin
(3) /dteam
(4) /dteam/cern

Once the user presents his proxy to a Grid service, this typically maps the groups, subgroups, and
roles to one or more GIDs (Group IDs) and the user DN to one specific UID (User ID). The
privileges of the user on the resources managed by the contacted Grid service are therefore defined by
the privileges of the n-tuple (UID, GIDs) in the system. LCMAPS mapping examples:

(5) “/dteam/Role=lcgadmin” .dteamsgm
(6) “/dteam” .dteam
(7) “/dteam/cern” .dteamcern

An Access Control List (ACL) is a list of entries defining the authorization on a given resource.
ACLs can be positive, i.e. defining who is authorized to perform a given set of operations or access a
given resource, or negative, negating permission to the service. Example of a DPM positive ACL:

(8) # file: /grid/dteam
owner: root
group: dteam

 user::rwx
 group:: rwx
 group:dteam/Role=lcgadmin:rwx
 group:dteam/Role=production:rwx
 mask::rwx
 other::r-x
 default:user::rwx
 default:group:rwx

 April 14, 2008

 7 D R A F T

 default:group:dteam/Role=lcgadmin:rwx
 default:group:dteam/Role=production:rwx
 default:mask::rwx
 default:other::r-x

4. WLCG proposed extensions

We specify here the properties of the SRM data objects that are being considered for addition to the
SRM protocol.

4.1 Extensions of space properties
An SRM space is further characterized by the following properties:

• Group (NEW)
• Owner/Group Permission (Release, Update, Read-from-Space, Write-to-Space, Stage-to-

Space, Remove-from-Space, Modify-ACL) (NEW)

A space which does not have an associated token description is known as DEFAULT space. There
could be many default spaces in a system, each with different characteristics defined by the
“properties” of each space and by the space permissions (see later).

A space belongs to an owner/group which is the initial creator of the space. A space can also be
created by a site administrator statically. The site administrator defines the owner and main group for
the space. A space owner has administrative privileges over the space. For example it can override/fix
permissions and delete unwanted files. However it would not be bound to any VOMS FQAN, but to
the definition of owner (DN) and possibly group (VOMS FQAN).

Permissions on the spaces are expressed in terms of DNs and/or VOMS FQANs [2].

The owner of a space can initially set ACLs on the space. This feature is not needed in WLCG.

In WLCG the storage resource administrator can set default ACLs on spaces via an administrative
interface. Default ACLs are ACLs which are applied to the newly dynamically or statically reserved
spaces. Furthermore specific space ACLs can be initially set by the storage resource administrator on
a space.

ACLs define the set of operations that a user whose FQAN matches the space ACLs can perform on
the space.

The set of possible operations are:

• Release : specifies which users/groups can release the space. This operation is not supported
in WLCG since only the owner of the space or the administrator of the storage service can
release spaces.

• Update : specifies which users/groups can update the space, such as modifying its size,
lifetime, etc. – Is this really needed ?

 April 14, 2008

 8 D R A F T

• Read-from-Space : specifies which users/groups can perform srmPrepareToGet operations
on this space.

• Write-to-Space : specifies which users/groups can perform srmPrepareToPut or srmCopy
operations to this space.

• Stage-to-Space : specifies which users/groups can perform srmBringOnline operations to
this space.

• Remove-from-Space : specifies which users/groups can perform srmPurgeFromSpace
operations from this space.

• Modify-ACLs : specifies which users/groups can modify the ACLs on the space. This
operation is not yet supported in WLCG since only the storage resource administrator can
perform this operation.

Only the primary FQAN should be considered when matching ACLs.

ACLs can be positive or negative. Positive ACLs are meant to grant access while negative ACLs
specify who should be negated the authorization to the resources the ACLs apply to. Negative ACLs
take precedence over positive entries.

The semantic of positive and negative ACLs must be agreed. A proposal is the following:

A service should first scan the list of negative ACL and if there is a match with the current client (DN
and first FQAN should be considered) then the access is denied. Then the service should scan the
positive ACL and if there is a match with the current client (DN and first FQAN should be
considered) then the access is granted. If there was no match, then the access is denied.

The owner user and group has an implicit entry on the positive list, meaning that if both the negative
and positive ACLs are empty, then the access is granted for them. However if they are explicitly
denied by the negative list, then they cannot access the space.

Management tools must be available to the resource administrator to manipulate ACLs directly and
change the internal resolution of proxies. The set of allowed management operations must be agreed
on.

4.2 SRM v2.3 spaces management calls

In what follows we list the new SRM space management functions that would offer an interface to
the requested new functionality.

4.2.1 srmReserveSpace

This function is used to reserve a space in advance for the upcoming requests to get some guarantee
on the file management. Asynchronous space reservation may be necessary for some SRMs to serve
many concurrent requests.

Please note: The proposed change implies modification of the current SRM v2.2 WSDL. We do not
propose to change the WSDL at the moment. However we list the needed modification for supporting
dynamic space reservation in the future with the requested permission on spaces.

 April 14, 2008

 9 D R A F T

Additional Data Types

 Enum TSpaceRequestType {
 RELEASE,

 UPDATE,
 READ-FROM-SPACE,
 WRITE-TO-SPACE,
 STAGE-TO-SPACE,
 REMOVE-FROM-SPACE,
 MODIFY-ACLs}

typedef struct {
string FQAN,

 TSpaceRequestType spaceRequest
 } TAccessControlList

Parameters

 In:

string authorizationID,
string userSpaceTokenDescription,

 string Owner (VOMS DN),
 string Group (VOMS FQAN),
 TAccessControlList[] positiveACLs,
 TAccessControlList[] negativeACLs,

TRetentionPolicyInfo retentionPolicyInfo,
unsigned long desiredSizeOfTotalSpace,
unsigned long desiredSizeOfGuaranteedSpace,
int desiredLifetimeOfReservedSpace,
unsigned long [] arrayOfExpectedFileSizes,
TExtraInfo[] storageSystemInfo,
TTransferParameters transferParameters

 Out:
TReturnStatus returnStatus,
string requestToken,

 int estimatedProcessingTime,
 TRetentionPolicyInfo retentionPolicyInfo,

unsigned long sizeOfTotalReservedSpace, // best effort
unsigned long sizeOfGuaranteedReservedSpace,
int lifetimeOfReservedSpace,
string spaceToken

4.2.2 srmGetSpaceMetadata

This function is used to get information of a space. Space token must be provided, and space tokens
are returned upon a completion of a space reservation through srmReserveSpace or
srmStatusOfReserveSpaceRequest.

 April 14, 2008

 10 D R A F T

Please note: The proposed change implies modification of the current SRM v2.2 WSDL. We do not
propose to change the WSDL at the moment. However we list the needed modification for supporting
dynamic space reservation in the future with the requested permission on spaces.

Additional Data Types

typedef struct {

string spaceToken,
 TReturnStatus status,
 TRetentionPolicyInfo retentionPolicyInfo,
 TAccessControlList[] positiveACLs,
 TAccessControlList[] negativeACLs,

string owner,
string group

 unsigned long totalSize, // best effort
unsigned long guaranteedSize,

 unsigned long unusedSize,
 int lifetimeAssigned,
 int lifetimeLeft

} TMetaDataSpace

 Parameters

 In:

string authorizationID,
string[] arrayOfSpaceTokens

 Out:
TReturnStatus returnStatus,
TMetaDataSpace[] arrayOfSpaceDetails

4.3 SRM v2.3 get calls
The definition of the srmPrepareToGet/srmStatusOfGetRequest,
srmBringOnline/srmStatusOfBringOnline, and srmCopy/srmStatusOfCopy request remains
unchanged with respect to what has been specified in the SRM v2.2 specification [1]. The only
difference is that now clients can pass a storage token that has to be honored in the calls. A copy of
the file associated to the list of SURLs specified must be retrieved in the space specified if the user
making the request has the privileges to recall a copy of that file in the specified space.

4.4 Tape usage optimization
All relative SRM calls for tape usage optimization have the extra parameter:
TExtraInfo[] defined as follows:

 April 14, 2008

 11 D R A F T

typedef struct { string _key,_
 string value
} TExtraInfo

TExtraInfo is used wherever additional information is needed. For example, when it is used for
additional information for transfer protocols, the keys may specify access speed, available number of
parallelism, and other transfer protocol properties. Servers must honor in all relative calls such
parameter when passed. Furthermore, information about directory paths and tokens should also be
kept into consideration when selecting tape sets.

 April 14, 2008

 12 D R A F T

REFERENCES
[1] The Storage Resource Manager Interface Specification, Version 2.2, OGF – Grid Storage
Resource Management Working Group, 15 February 2008, http://datagrid.lbl.gov/tmp2/OGF-GSM-
SRM-v2.2-080121.doc
[2] A VOMS Attribute Certificate Profile for Authorization, V. Ciaschini, 15 April 2004, http://grid-
auth.infn.it/docs/AC-RFC.pdf
[3] Recommendations for changes in gLite Authorization, C. Witzig, 6 February 2008,
https://edms.cern.ch/document/887174/1
[4] Storage Element Model for SRM 2.2 and GLUE schema description, F. Donno et al., v. 3.5, 27
October 2006, https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.glue-
wg/docman.root.background.specifications/doc14619;jsessionid=58E33DC10A69FABED90ACD4C
8EFE6E1F

http://datagrid.lbl.gov/tmp2/OGF-GSM-SRM-v2.2-080121.doc
http://datagrid.lbl.gov/tmp2/OGF-GSM-SRM-v2.2-080121.doc
http://grid-auth.infn.it/docs/AC-RFC.pdf
http://grid-auth.infn.it/docs/AC-RFC.pdf
https://edms.cern.ch/document/887174/1
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.glue-wg/docman.root.background.specifications/doc14619;jsessionid=58E33DC10A69FABED90ACD4C8EFE6E1F
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.glue-wg/docman.root.background.specifications/doc14619;jsessionid=58E33DC10A69FABED90ACD4C8EFE6E1F
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.glue-wg/docman.root.background.specifications/doc14619;jsessionid=58E33DC10A69FABED90ACD4C8EFE6E1F

	1.1 The SRM space
	1.2 SRM files and copies
	1.3 SRM handles
	3.1 VOMS Groups, Roles, and Access Control Lists
	4.1 Extensions of space properties
	4.2 SRM v2.3 spaces management calls
	4.3 SRM v2.3 get calls
	4.4 Tape usage optimization
	REFERENCES

