Higgs physics at Ollo Overview of physics analysis ongoing in Belgrade I. Bozovic Jelisavcic, G. Dumbelovic, S. Lukic, M. Pandurovic Vinca Institute of Nuclear Sciences Belgrade ### Overview - Higgs physics at CLIC - Analyses carried on in Belgrade - Concept and motivation - Status of the analyses - Does forward region play a role? - Summary ### Higgs physics at CUC #### CLIC will be a Higgs factory – Already at 350 GeV the number of Higgs bosons will be by far surpassing the number of W bosons at LEP #### 350 GeV, Higgsstrahlung - Absolute determination of the production xsection O(2%), sensibility to invisible decay modes to BR_{inv}~1% - Z \rightarrow ee,µµ, qq absolute determination g_{HZZ} O(1%) (comparable sensitivity at 350 GeV CLIC and 250 GeV ILC) #### 1.4 TeV, 3 TeV, W fusion - Highest precision for rare decays and selfcoupling - Relative couplings to g_{HWW} / g_{HZZ} can be determined at O(1%) SM test - Other relative BR measurements i.e. $g_{Hcc}/g_{Hbb}O(1.5\%)$ | | 350 GeV | 1.4 TeV | 3 TeV | |------------------|----------------------|-----------------------|-----------------------| | L _{int} | 500 fb ⁻¹ | 1500 fb ⁻¹ | 2000 fb ⁻¹ | | # ZH events | 68 000 | 20 000 | 11 000 | | # Hv ٍv ॄ events | 26 000 | 370 000 | 830 000 | | # He⁺e⁻ events | 3 700 | 37 000 | 84 000 | ## Analyses carried on in Belgrade #### 350 GeV, Higgsstrahlung • $H \rightarrow WW$, fully hadronic decays Observable: $\frac{g^2_{HWW} \cdot g^2_{HZZ}}{\Gamma_H}$ Challenge: Multy-jet topology (4/6 jets), flavour-tagging #### **1.4 TeV** • H $\rightarrow \mu\mu$, rare decays BR~2·10⁻⁴ Observable: $\frac{g^2_{HWW} \cdot g^2_{H\mu\mu}}{\Gamma_H}$ Challenge: Rare process-small signal yield, µ p_T resolution, *forward e-tagging* • $H \rightarrow ZZ$, fully hadronic decays Observable: $\frac{g^2_{HWW} \cdot g^2_{HZZ}}{\Gamma_H}$ Challenge: Jet reconstruction (W, Z separation), b-tagging Higgsstrahlung WW fusion ### Concept and motivation σ_{prod}·BR is a measurable quantity whose uncertainty translates into the corresponding uncertainty of coupling(s) $$\frac{g^2_{HWW} \cdot g^2_{H\mu\mu}}{\Gamma_H}$$ $$\frac{g^2_{HWW} \cdot g^2_{H\mu\mu}}{\Gamma_H} \qquad \frac{g^2_{HWW} \cdot g^2_{HZZ}}{\Gamma_H}$$ - σ_{prod} ·BR is determined by finding/fitting the number of signal events - Statistical uncertainty of the measurement comes from the signal statistics and/or irreducible backgrounds - Higgs BRs measurements are potential probe for the New Physics (i.e. models that could possibly extend SM Higgs sector impact Higgs couplings to EW bosons and/or Higgs Yukawa couplings) - They also serve to test the SM predictions (mass-coupling linearity, relative couplings) ### General features #### All analyses include: - Full detector simulation - Full physics and machine background (γγ background has been overlaid before the digitization phase) - EPA approximation for low Q² region ... as realistic as possible #### Simulation details: - Event generation with WHIZARD v.1.95 including ISR and BS - Beam-spectrum generated with GUINEAPIG - Hadronization with PYTHIA - Assuming $m_H=126 \text{ GeV}$ - CLIC_ILD detector - Particle reconstruction and identification using PandoraPFA # $H \rightarrow \mu\mu$ at 1.4 TeV ### Background processes Processes $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ and $e^{\pm}\gamma \rightarrow e^{\pm}\mu^+\mu^-$ are treated in EPA for low momentum transferred by the exchanged photon (<4 GeV). In that kinematical region electron is substituted by a quasi-real photon. - The most important kinematical property of the signal is missing energy. - Process with the same signature like $\gamma\gamma \rightarrow \nu_{\mu}\overline{\nu_{\mu}}\mu^{+}\mu^{-}$ and $e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}\nu_{e}\overline{\nu_{e}}$ give irreducible background (even after MVA) - Processes like $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ and $e^\pm\gamma \rightarrow e^\pm\mu^+\mu^-$ with low-angle electron in the final state can be dealt with in MVA + electron tagging BDT is trained on all background samples, except $e^+e^- \rightarrow \mu^+\mu^-\nu_e^- \overline{\nu_e}$ ## Preselection and MVA analysis Common integral luminosity of 1.5 ab⁻¹ is assumed, without beam polarization \rightarrow 78 signal events. #### PRESELECTION: - Two reconstructed muons - Di-muon invariant mass window (105-145) GeV - Forward electron-tagging #### **PRESELECTION** Preselection efficiency 89% BDT>0.098 Overall signal efficiency 27% ### Signal and background PDFs Fully simulated, as large as possible, samples of signal and background to extract PDFs #### **SIGNAL** $$f_S = t_1 + C \cdot t_2$$ #### TOTAL BACKGROUND $$f_{BCK} = p_0(p_1 e^{p_2(x-m_H)} + (1-p_1))$$ ## Toy MC experiments - Pseudo-experiments based on randomly sampled fully simulated signal events + backgrounds generated with PDFs - Expected shape of data (signal + background) for each Toy MC is fitted with f to extract number of signal N_s $$f = k \cdot f_S + (1 - k) \cdot f_{BCK} \Rightarrow N_S = k \cdot \int f_S dm$$ ### Statistical uncertainty 5000 Toy MC experiments is performed to extract statistical uncertainty and check the pull distribution - RMS of the signal distribution give statistical uncertainty of the measurement $\delta(\sigma_{prod} \cdot BR$)=38.1% - Pull distribution confirms adequate description of signal and background with PDFs ### Result of H to µµ analysis | $N_{\rm s}$ | 20±8 | |----------------------------------|---------| | $\epsilon_{ m s}$ | 27% | | $\sigma_{ m prod} imes { m BR}$ | 0.05 fb | | $\delta(\sigma_{WWH} \times BR)$ | 38% | | $\delta(g_{H\mu\mu})$ | 16% | - Uncertainty of the measurement is dominated by the small statistics of signal and by backgrounds with the true missing energy - Uncertainty of $g_{H\mu\mu}$ coupling is estimated assuming uncertainties of g_{HWW} and Γ_H in the model independent approach using -80% polarization - One should note that inclusion of beam polarization will boost production cross-section by a factor 2.34 Publication status: CLICdp Note ready for reviewing, publication in preparation Also, I. Bozovic-Jelisavcic, S. Lukic, G. Milutinovic-Dumbelovic, M. Pandurovic, SM-like Higgs decay into two muons at 1.4 TeV CLIC, CLICdp-Conf-2014-001, Proceedings of LCWS13, 11-15 November 2013, Tokyo, Japan, http://arxiv.org/abs/1403.6695 Poster accepted at ICHEP 2014 ### Does forward region play a role? #### YES - Forward region calorimetry plays an important role to veto electron spectators from 4-f and $e\gamma_{BS}$ processes. - Energy dependent tagging is introduced in LumiCal and BeamCal: - Take 5 mrad cone particles (e, gamma) to construct electron, - Require 4σ deviation from the background (converted pairs) energy in the layer with the maximal deposition. Energy resolution is taken into account, as well as fluctuations of background deposition over the θ range. See more in Goran's talk | Process | Rejection | |---|------------------------------| | $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ | 44 ^{EPA} % /25%/17% | | $e^{\pm}\gamma_{_{BS}} \rightarrow e^{\pm}\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$ | 38 ^{EPA} %/18%/11% | | $H o \mu^+ \mu^-$ | 7% /7%/0.2% | # $H \rightarrow ZZ$ at 1.4 TeV # Signal and background | Process | $\sigma[\mathit{fb}]$ | |---|-----------------------| | $e^+e^- \to H\nu_e \overline{\nu_e}, H \to ZZ -> qqqq$ | 3.45 | | $e^+e^- \rightarrow qq v_e \overline{v_e}$ | 788 | | $e^+e^- \rightarrow qqqq v_e \overline{v_e}$ | 24.7 | | $e^+e^- \to Hv_e\overline{v_e}, H \to WW->qq$ | _{qq} 27.6 | | $e^+e^- \rightarrow qq$ | 4009.5 | | $e^+e^- \rightarrow qqqq$ | 1328.1 | | $e^+e^- \rightarrow qqqqll$ | 71.7 | | $e^+e^- \rightarrow qqqqlv$ | 115.3 | | $e^+e^- \rightarrow Hv_e v_e, H \rightarrow bb$ | 136.94 | | $e^+e^- \rightarrow Hv_e\overline{v_e}, H \rightarrow ZZ - > qqll / \ell$ | uu 0.177 | | | | - Numerous background - W decays gives same topology (W-Z separation) - Selection optimized by MVA Three possible ZZ decay topologies: - qqqq~48% - qqll~42% - 1111~10% - Only fully-hadronic final state considered ## Analysis strategy - FASTJET: Force events into 4 jets, k_T exclusive, selected PFOs within R=1.0 - b-TAGGING (helps to reduce $e^+e^- \to Hv_e\overline{v_e}, H \to bb$) - PRESELECTION: - 45 GeV<m_{Z1}<110 GeV, m_{Z2}<65 GeV - $90 \text{ GeV} < m_{\text{Higgs}} < 165 \text{ GeV}$ - $-\log(y_{34}) < 3.5$ - $-\log(y_{23}) < 3.0$ - $100 \text{ GeV} < E_{\text{vis}} < 600 \text{ GeV}$ - $E_{lepton} < 30 \text{ GeV}$ - $P_t^{jet} > 20 \text{ GeV}$ - $P(b)^{jet1} < 0.95$, $P(b)^{jet2} < 0.95$ - MVA selection - FIT m_H to extract number of signal events (to be done) ### Preselection and MVA analysis Preselection efficiency 53% BDT>-0.052 Overall signal efficiency 40% $$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S+B}}{S} \sim 9\% \qquad (115 \text{ GeV} < m_{\text{H}} < 150 \text{ GeV})$$ - TMVA trained with 8 variables $(m_{Z1,} m_{Z2,} \log{(y_{34})}, \log{(y_{23})}, P(b)^{jet1}, P(b)^{jet2}, P(c)^{jet1}, P(c)^{jet2})$ on total background - Irreducible background from hadronic W decays $e^+e^- \rightarrow Hv_e\overline{v_e}, H \rightarrow WW->qqqq$ # $H \rightarrow WW$ at 350 GeV ## Signal and background HZ @350GeV $\sigma(e^+e^- \rightarrow HZ) \sim 134 \text{ fb} \Rightarrow 68000 \text{ events in 4-years detector}$ operation with 50% data-taking efficiency $$H \rightarrow WW \rightarrow qqqq$$, $Z \rightarrow ff$, $f=e,\mu,q$ - Numerous background - Multi-jet topology 4/6 jets depending on Z final state - Selection optimized by MVA BF(H→WW)~23% BF(WW→qqqq)~45% BF(Z→visible)~80% Leaves 8% of all Higgs bosons Produced in HZ | Signal HZ, H→WW→qqqq | σ [fb] | |-------------------------------------|--------| | Z→ee | 0.48 | | $Z\rightarrow \mu\mu$ | 0.48 | | Z→qq | 9.7 | | Background | | | HZ, other H decays, Z vis. d. | 92.02 | | e+e- →qqqq | 5847 | | e⁺e⁻ →qqll | 1704 | | e ⁺ e ⁻ →qqlv | 5914 | | e ⁺ e ⁻ →qqνν | 324.6 | ### Analysis strategy 4 jets - **FASTJET**: Force events into 4 jets,kT exclusive, selected PFO's R=1.2 - b-TAGGING (helps reduce ee \rightarrow HZ, H \rightarrow bb background) - PRESELECTION - $m_Z > 40 \text{ GeV}$ - 45 GeV <m_w<95 GeV - $m_H > 65 \text{ GeV}$ - $20^{\circ} < \theta_{el} < 160^{\circ}$ - 100 GeV < Evis < 300 GeV - P_t jet > 20 GeV - $-\log(y34) < 4.0$ - MVA selection (training: 10 variables NPFO, $-\log(y_{23})$, $-\log(y_{34})$, m_{w_t} , m_{H_t} , θ_{el} , E_{vis} , P_t^{jet} , P(b), P(c); samples: HZ, Z \rightarrow ll, nonWW-qqqq decays, ee \rightarrow qqll, ee \rightarrow qqll qqlv) - FIT m_z to extract number of signal events (to be done) ### Analysis strategy 6 jets - FASTJET: Force events into 6 jets, kT exclusive, selected PFO's within R=1.2 - b-TAGGING (helps reduce ee→HZ, H→bb background) - PRESELECTION - $m_Z > 70 \text{ GeV}$ - $m_w > 10 \text{ GeV}$ - y12 < 2.0 - y23<2.6 - y34<3.0 - y45<3.2 - MVA selection (training on 11 variables: NPFO, $-\log(y_{12})$, $-\log(y_{23})$, $-\log(y_{45})$, $-\log(y_{56})$, $-\log(y_{67})$, m_{w_1} , m_{H_1} , m_{w^*} , E_{vis} , $P_t^{HiggsJets}$; samples: HZ, Z-qq, nonWW-qqqq decays, ee \rightarrow qqqq) - FIT M_z to extract number of signal events (to be done) ### Summary - Several Higss analyses have been carried on in Belgrade in order to complement CLIC Physics Program at various energy stages (one PhD thesis ongoing). - For all processes under study (H $\rightarrow \mu\mu$, H \rightarrow ZZ, H \rightarrow WW) reduction of background is challenging. - For measurements like BR(H $\rightarrow \mu\mu$) specific background can be suppressed by e-tagging forward region is important. - While e-tagging, coincidental signal rejection due to Bhabha tagging has to be considered. #### $e^+e^- \rightarrow Hv_e^- v_e^-, H \rightarrow \mu^+\mu^-$ | Process | xs (fb) | |--|---------| | $ee \rightarrow \nu\nu\mu\mu$ | 129 | | $ee ightarrow ee \mu \mu$ (*) | 24.5 | | $ee ightarrow ee u_{\mu} u_{\mu} \mu \mu$ | 1.59 | | $e^-\gamma_{EPA} ightarrow e^-\mu\mu$ (*) | 217.3 | | $e^-\gamma_{BS} o e^-\mu\mu$ (*,**) | 248 | | $\gamma_{EPA}e^+ o e^+\mu\mu$ (*) | 216.9 | | $\gamma_{ extit{BS}} extit{e}^+ ightarrow extit{e}^+ \mu \mu \; (*,**)$ | 250 | | $e^-\gamma_{EPA} ightarrow e^- u_\mu u_\mu\mu\mu$ | 3.52 | | $\mathrm{e}^-\gamma_{BS} ightarrow \mathrm{e}^- u_\mu u_\mu\mu\mu$ (**) | 11.5 | | $\gamma_{EPA}e^+ ightarrow e^+ u_\mu u_\mu\mu\mu$ | 3.50 | | $\gamma_{BS}e^+ ightarrow e^+ u_\mu u_\mu\mu\mu$ (**) | 11.4 | | $\gamma_{EPA}\gamma_{EPA} \rightarrow \nu_{\mu}\nu_{\mu}\mu\mu$ | 5.61 | | $\gamma_{EPA}\gamma_{BS} \rightarrow \nu_{\mu}\nu_{\mu}\mu\mu$ (**) | 22.9 | | $\gamma_{BS}\gamma_{EPA} \rightarrow \nu_{\mu}\nu_{\mu}\mu\mu$ (**) | 22.8 | | $\gamma_{BS}\gamma_{BS} \rightarrow \nu_{\mu}\nu_{\mu}\mu\mu \ (**)$ | 110 | ^AIncluding a cut of 100 GeV $< m(\mu\mu) < 140$ GeV and requiring a minimal polar angle of 8° for each muon. ^B Beamstrahlung is included in luminosity used for x-section generation