

Occupancy from incoherent pairs in the HCal endcap at CLIC

Suzanne van Dam (CERN, TU Delft), André Sailer (CERN)

Compact Linear Collider (CLIC)

- CLIC beam structure
 - 312 bunch crossings per bunch train
 - 0.5 ns bunch spacing
 - 3.7 •10⁹ particles per bunch
- Beam-beam interactions
 - Coherent and trident pairs leave detector through
 10 mrad opening angle
 - Incoherent pairs and
 γγ → hadrons stay in detector

Very forward region

- γγ → hadrons reach the HCal endcap directly
- Incoherent pairs shower in the BeamCal
- Secondary particles pass through the support tube and enter the HCal endcap

Occupancy in the HCal endcap

- Background induces a too high occupancy in the HCal endcap
 - 30 x 30 mm² scintillating tiles
 - Total readout time 300 ns per bunch train, divided in 12 time windows of 25 ns
 - Energy threshold 300 keV (≈0.3 MIP)
 - Occupancy per tile: number of time windows in with an energy deposit above threshold

Reduction of the occupancy

- For γγ → hadrons the occupancy cannot be reduced by geometrical changes
- For incoherent pairs the support tube serves as a shielding
- ~80% occupancy due to incoherent pairs should be reduced to below γγ → hadrons contribution of ~8%

- This is done by:
 - Optimization of the support tube
 - Material
 - Thickness
 - Taking into account engineering perspective
 - HCal granularity

Two estimation methods

1. Particle counting

- Count the number of particles passing through the support tube by registration in a scoring plane around it
- Find the increase or decrease of the occupancy but no quantitative estimation of it
- Requires a few bunch crossings (BX) of simulation data: fast simulation

2. Full occupancy estimation

- Quantitative estimation of the occupancy
- Requires a few bunch trains of 312 BX of simulation data: demands a lot of simulation time

Full detector simulations with MOKKA, GEANT4

Physics list: QGSP_BERT_HP

Detector model: CLIC_ILD_CDR

Secondary particles

- Secondary particles pass through support tube and cause energy deposits in the HCal endcap
- Neutrons (n) and photons (γ) together are responsible for the majority of energy deposits
- The support tube should shield these particles
- In the particle counting method only neutrons and photons have to be considered

Relative impact of neutrons and photons

- Count the number of neutrons and photons passing through the support tube by registering hits (H) in a scoring plane around it
- Compare the number of hits in the scoring plane to the number of energy deposits in the HCal per particle type
- Photons cause more energy deposits per hit (factor 4.38)
- Define a figure of merit (*FOM*) that should be minimized:

$$FOM = H_n + 4.38H_{\gamma}$$

Support tube material

- Simulations with different support tube materials:
 - Polyethylene (PE) → neutron shielding
 - Tungsten (W) → photon shielding
 - Combine materials to shield both neutrons and photons

Support tube thickness

- Constraints on thickness:
 - $r_{max} = 400 \text{ mm (HCal endcap)}$
 - $r_{min} = 185 \text{ mm (BeamCal)}$
 - Max $\Delta r = 215$ mm

Tungsten

- Thicker tube → less hits in scoring plane
- Tungsten support tube with maximal thickness minimizes the figure of merit

Combination of materials

PE - W

- W + PE = 215 mm
- The figure of merit is minimized for 90 mm PE + 125 mm W

Occupancy for optimised geometries

- Using method 2: full occupancy estimation
- Compare the situation before optimisation to the two optimised tubes:
 - 215 mm W
 - 90 mm PE + 125 mm W

Occupancy per tile: number of time windows of total 12 with an energy deposit above threshold 30 x 30 mm² scintillating tiles Energy threshold 300 keV (≈0.3 MIP) Total readout time 300 ns 12 time windows of 25 ns

Result for optimised geometries

- Using method 2: full occupancy estimation
- Compare the situation before optimisation to the two optimised tubes:
 - 215 mm W
 - 90 mm PE + 125 mm W

Occupancy per tile: number of time windows of total 12 with an energy deposit above threshold 30 x 30 mm² scintillating tiles Energy threshold 300 keV (≈0.3 MIP) Total readout time 300 ns 12 time windows of 25 ns

Engineering perspective

- Supporting a heavy tungsten support tube from the cavern wall is challenging:
 - As little weight as possible: Use the PE W tube and not W tube
- Need enough room for the QD0 support structure:
 - Shorter thick part of the support tube

Shorter support tube

- Initial tube extends to z = 7500 mm
- Shorten to only cover the HCal endcap with max z = 4240 mm
- A tube until z = 4256 mm gives a high occupancy in the last HCal endcap layers
- With a tube until z = 4360 mm the same result as for the long tube to z = 7500 mm is obtained

HCal endcap granularity

- Standard: square scintillating tiles, 30x30 mm²
- Reduce tile size
- No saturation behaviour: occupancy reduction is proportional to the reduction of tile area

Occupancy: number of time windows with an energy deposit in the inner radius of the HCal endcap, averaged over layers 20 to 30

Summary of the results

- The support tube has to shield photons and neutrons to reduce the occupancy in the HCal endcap. Photons have a larger contribution to the occupancy
- Combinations of materials can shield both photons and neutrons:
 - Tungsten for photons; polyethylene for neutrons
- The occupancy is reduced from ~80% to ~4% with a W support tube
- A short PE W support tube within engineering constraints reaches an occupancy of ~8%, a level comparable to γγ → hadrons
- With the tile size this can be decreased further if required

Conclusions

- A safety factor of 5 is used for incoherent pairs in the CLIC Conceptual Design Report
- With this factor, it is expected that changes of the support tube alone cannot reduce the occupancy sufficiently
- An additional reduction of the tile size in the HCal endcap inner radius would be required
- The CLIC study aims to design a new detector model
- The results found here are expected to be applicable to a new model to a great extent
- For a detailed description of the occupancy in the new model a full occupancy estimation will be required

Backup

Coherent, incoherent, and trident pairs

Coherent pairs

Trident pairs

Incoherent pairs

Particles inside the support tube

- Photon hits on a scoring plane inside the support tube (without BeamCal support) show a dip at the location of the BeamCal
- Neutron hits peak at the location of the BeamCal
- → Photons from showers in the BeamCal are shielded by the tungsten absorber

Time of energy deposits

Cross sections

Polyethylene

Energy spectra

235 mm 147 mm 235 mm .78 mm _0 mm

Tungsten

Polyethylene

Spectrum of energy deposits

- The spectrum of energy depositions in the HCal endcap drops of more quickly for the W and PE+W tube, compared to the initial iron support tube.
- The energy threshold is 300 keV (0.3 MIP)

Engineering model of CLIC_ILD_CDR

Tungsten → lead

- Part of the tungsten in the support tube is replaced by lead:
 - 110 mm polyethylene + 125 mm Pb
 - 110 mm polyethylene + 65 mm Pb + 60 mm W
- In both cases a higher occupancy level.

PE + $H_3BO_3 \rightarrow Pure PE$, pure W \rightarrow W alloy

Limitation of the FOM

 The number of hits in the scoring plane before the support tube depends on the material choice.

- This is possibly due to reflections in the tube.
- Looking at only outgoing particles shows the dependency not for photons, but still for neutrons.
- A description of the occupancy in terms of hits in the scoring plane becomes complex

215 mm vs 135 mm thickness

