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Compact Linear Collider (CLIC)

e CLIC beam structure

— 312 bunch crossings per bunch train

— 0.5 ns bunch spacing
— 3.7 -10° particles per bunch

e Beam-beam interactions

— Coherent and trident pairs
leave detector through
10 mrad opening angle

— Incoherent pairs and
vy = hadrons stay in detector
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Very forward region

* yy = hadrons reach the HCal endcap directly
* Incoherent pairs shower in the BeamCal

* Secondary particles pass through the support
tube and enter the HCal endcap
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Occupancy in the HCal endcap

* Background induces a too high occupancy in the HCal endcap
— 30 x 30 mm?scintillating tiles

— Total readout time 300 ns per bunch train, divided in 12 time
windows of 25 ns

— Energy threshold 300 keV (=0.3 MIP)

— Occupancy per tile: number of time windows in with an energy
deposit above threshold

— Incoherent Pairs
—vyy — Hadrons
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Reduction of the occupancy

— Incoherent Pairs
—yy — Hadrons

 Foryy > hadrons the occupancy cannot
be reduced by geometrical changes

* Forincoherent pairs the support tube
serves as a shielding

 ~80% occupancy due to incoherent pairs 10 -

105—

Occupancy [1/Train]

should be reduced to below yy > hadrons 04 08 “ﬁ;dius[;]
contribution of “8%
¢ ThlS iS done by Vacuum Pipe LumiCal / BPM Anti-Solenoid

— Optimization of the support tube JI Hm
* Material ‘l‘:z
* Thickness — 0
— Taking into account
engineering perspective

— HCal granu la rlty BeamCalKicker Support Tube QDO
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Two estimation methods -/ =

1. Particle counting

— Count the number of particles passing through the
support tube by registration in a scoring plane around it

— Find the increase or decrease of the occupancy but no
guantitative estimation of it

— Requires a few bunch crossings (BX) of simulation data:
fast simulation

2. Full occupancy estimation
— Quantitative estimation of the occupancy

— Requires a few bunch trains of 312 BX of simulation data:
demands a lot of simulation time

Full detector simulations with MOKKA, GEANT4
Physics list: QGSP_BERT_HP
Detector model: CLIC_ILD_CDR



Secondary particles

e Secondary particles pass through support tube and cause
energy deposits in the HCal endcap

* Neutrons (n) and photons (y) together are responsible for the
majority of energy deposits

* The support tube should shield  Energy deposits in HCal endcap
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* In the particle counting method
only neutrons and photons
have to be considered
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Relative impact of neutrons and
photons

Count the number of neutrons and photons passing through the
support tube by registering hits (H) in a scoring plane around it

Compare the number of hits in the scoring plane to the number of
energy deposits in the HCal per particle type

Photons cause more energy deposits per hit (factor 4.38)
Define a figure of merit (FOM) that should be minimized:
FOM =H +4.38Hy

Energy deposits in HCal endcap
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Support tube material

e Simulations with different support tube materials:
— Polyethylene (PE) = neutron shielding
— Tungsten (W) - photon shielding
— Combine materials to shield both neutrons and photons
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Support tube thickness

Vacuum Pipe LumiCal / BPM Anti-Solenoid

«wm e Constraints on thickness:
* r.., =400 mm (HCal endcap)
o * r..,= 185 mm (BeamCal)

* Max Ar=215mm

150

BeamCalKicker Support Tube QDO

: : ‘ Z (mm)

Tungsten .
Agzg,................ * Thicker tube >
N Tungsten | less hits in scoring
e 2 LR Th, ez 10 = plane
2 1sf, 1 = « Tungsten support

'Y . .
10 1 S tube with
sb R maximal thickness
ML ¢ A i . . .
: o Lon, : minimizes the
0 I B .’. .’. |%. % .@| . 50 o .
50 100 150 200 figure of merit

Tube thickness (mm)

Suzanne van Dam, FCAL Collaboration Workshop, 26-27 May 2014



Combination of materials

e W+ PE=215mm
PE-W

g 0.3 1 T 115 g .
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Occupancy for optimised geometries

BEFORE

c 1

—_
o

Occupancy

e Using method 2: full occupancy

. _ Iron:
estimation ~80% occupancy
 Compare the situation before
optimisation to the two R a— %
optimised tubes:
— 215mm W

— 90 MMPE+125 mm W

Occupancy per tile: number of time windows of
total 12 with an energy deposit above threshold
30 x 30 mm? scintillating tiles

Energy threshold 300 keV (=0.3 MIP)

Total readout time 300 ns

12 time windows of 25 ns
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Result for optimised geometries

BEFORE

c 1

Occupancy

e Using method 2: full occupancy Iron:

estimation ~80% occupancy
 Compare the situation before
optimisation to the two R a— %
optimised tubes: AFTER OPTIMISATION
— 215 mmW <
— 90 mm PE + 125 mm W g ‘S Tungsten:

~4% occupancy

Occupancy per tile: number of time windows of T LaverNumber
total 12 with an energy deposit above threshold
30 x 30 mm? scintillating tiles

Energy threshold 300 keV (=0.3 MIP)

Total readout time 300 ns

12 time windows of 25 ns ol

PE-W:
~8% occupancy

Radius (m)
Occupancy

= yy = hadrons
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Engineering perspective

e Supporting a heavy tungsten support tube from the
cavern wall is challenging:

— As little weight as possible: Use the PE — W tube and not
W tube

* Need enough room for the QDO support structure:
— Shorter thick part of the support tube

HCal endcap
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Shorter support tube

* Initial tube extends to z=7500 mm
e Shorten to only cover the HCal endcap with max z=4240 mm
* Atube until z=4256 mm gives a high occupancy in the last HCal

endcap layers

* With a tube until z=4360 mm the same result as for the long tube
to z=7500 mm is obtained

PE -W, z=4256 mm
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HCal endcap granularity

* Standard: square scintillating tiles, 30x30 mm?
* Reduce tile size

 No saturation behaviour: occupancy reduction is
proportional to the reduction of tile area
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Summary of the results

 The support tube has to shield photons and neutrons to
reduce the occupancy in the HCal endcap. Photons have a
larger contribution to the occupancy

 Combinations of materials can shield both photons and
neutrons:

— Tungsten for photons; polyethylene for neutrons

 The occupancy is reduced from ~80% to ~4% with a W
support tube

 Ashort PE—W support tube within engineering constraints
reaches an occupancy of ¥8%, a level comparable to yy 2>
hadrons

* With the tile size this can be decreased further if required



Conclusions

* A safety factor of 5 is used for incoherent pairs in the
CLIC Conceptual Design Report

* With this factor, it is expected that changes of the

support tube alone cannot reduce the occupancy
sufficiently

* An additional reduction of the tile size in the HCal endcap
inner radius would be required

 The CLIC study aims to design a new detector model

* The results found here are expected to be applicable to a
new model to a great extent

* For a detailed description of the occupancy in the new
model a full occupancy estimation will be required



Backup
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Coherent, incoherent, and trident
pairs

* Coherent pairs

* Trident pairs

* Incoherent pairs

T XTI X ILX

(a) Breit-Wheeler (b) Bethe—Heitler (c) Landau—Lifschitz



Particles inside the support tube

* Photon hits on a scoring plane
inside the support tube
(without BeamCal support)
show a dip at the location of
the BeamCal

* Neutron hits peak at the
location of the BeamCal

- Photons from showers in the :
BeamCal are shielded by the T
tungsten absorber
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Time of energy deposits
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Cross sections

Tungsten
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Energy spectra

Tungsten
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Spectrum of energy deposits

110 mm PE +

100 mm iron (initial) 235 mm tungsten 125 mm tungsten
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* The spectrum of energy depositions in the HCal endcap drops
of more quickly for the W and PE+W tube, compared to the

initial iron support tube.
* The energy threshold is 300 keV (0.3 MIP)



Engineering model of
CLIC ILD CDR

N Any .y (Kicker on incoming beam )

HCAL
ENDCAP
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Tungsten - lead

* Part of the tungsten in the support tube is
replaced by lead:
— 110 mm polyethylene + 125 mm Pb
— 110 mm polyethylene + 65 mm Pb + 60 mm W

* |n both cases a higher occupancy level.
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PE + H,BO; = Pure PE,
pure W -> W alloy
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Limitation of the FOM

* The number of hits in the =~
scoring plane before the
support tube depends on
the material choice.

* This is possibly due to reflections in
the tube.

* Looking at only outgoing particles
shows the dependency not for
photons, but still for neutrons.

* A description of the occupancy in
terms of hits in the scoring plane
becomes complex
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215 mm vs 135 mm thickness
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