

ILL Project Management

Jerome Beaucour <u>beaucour@ill.fr</u>

Coordination of Millennium Project

The ILL Renaissance

Beginning of 2000 years, a major program was agreed concerning Instrument suites and Key reactor Component:

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

40 M€

Instruments: MILLENNIUM PHASE M0

60 M€

Instruments: MILLENNIUM PHASE M1

30 M€

Nuclear Reactor: Seismic reinforcement

20 M€

Nuclear Reactor: Key reactor & Rex Fukushima

ILL had to implement new rules

Millennium new phase M1:

- 60M€ over 7 years
- Renewal of the ILL instrument suite and part of experimental halls
- The lack of project control was identified
- => Request from ILL's associate to improve

Set the scene: the ILL projects

- Typical ILL projects we are speaking about are:
 - Scientific instrument and Infrastructure projects
 - Nuclear reactor key equipments
- They shar similar typical characteristics
 - 3-5 years duration;
 - 2-4M€ procurement cost
 - Technics:
 - fine positionning mechanics & big mechanics (tank, structure)
 - automation, electronic, software,
 - civil engineering, vacuum technologies, safety issues etc
 - final customer: the ILL
- Make or Buy: 90% of Manufacturing subcontracted; 75% of in House studies
- Legal framework: Not critical except for nuclear related project

Before 2006 at the ILL....

Work Organisation :

 No matrix organisation; Concurrent engineering rather uncommon; each service is working after each other with low level of interractions.

Management :

- Role unclear for the middle management; are they Experts? Project leaders? Staff providers?
- Project leader and Final client: the Scientist; project team implicit
- Decision process efficient within the Project boundaries; very poor outside: no Project management comitee

Budget:

- Budget allocated per year and rediscussed each year; no multiannual Project budget
- If a budget is allocated: Spend as much as you can

Project goals & technical baseline

- Goals identified but not quantified;
- No faisability studies; technical baseline not explicit compensated by a strong comitment of ILL staff for technical issues

How to proceed?

- Decision from direction: july 2006
- **Audit** of the R&D processus by an external consultancy: sept-nov 2006
- A working group is set with key people (some where reluctant to a new project organisation): jan- april 2007
- Very strong support from ILL direction
- Communication, training Implementation April/oct 2007

Process duration: 15 month

ILL project maragement

the main 2007

No change required set a **Project orga**

- Strong support matrix organisat
- Set a Project I behalf of the IL
- Split the two re project leade
- Set a referend guidelines,
- Set an explide phases, deliver

Matrix organisation at the ILL

Radiopr

	Pro	ject & '	Techn	O
	Proi Engineer	Mechan.	Optics	(
Instr Project 1	х	x	x	
Instr Project 2	x	x		
Instr Project 3	х	х	x	
Infrastruct ure Pr 1	х	х		
Infrastruct ure Pr 2	x	x		

			FOR	SCIEN
O	Sc. Comput.	Rea Mechanics	ctor C Nucl Safety	Div Radi
				x
	x			x
		x		x
			х	

The Project Leader drives engineers, technicians from different services & division. **COLLABORATIVE WORKS**

Projects Team

- ILL projects are carried out by project teams.
 - These are project-specific temporary structures which bring together the technical and management required for the project success
- Each project team is composed of :
 - a <u>Scientific Project Leader</u> in charge of needs definition and results validation
 - a <u>Technical Project Leader</u>, in charge of the design and realisation,
 - Several <u>Project Team Members</u>, from <u>each groups</u> <u>concerned</u>, dedicated to the project up to itscompletion
- Both Project Leaders report to the PMC

The ILL Project Phases & Deliverables

Example: <u>the</u> <u>feasibility phase</u>

STARTING POINT (INPUTS)

- Validated deliverables of the Pre-project phase
- Official appointment of a Scientific Project Leader and Technical Project Leader
- Budget and human resources for the Feasibility phase
- Deadline for the Feasibility phase

PURPOSE OF THE PHASE (OBJECTIVES)

Identify or compile information needed to allow the decision to launch the project to be taken:

- Define the scientific and technical content of the project
- Set up the project team
- Identify several possible technical solutions
- Assess the budgetary and human resources required (skills and availability)
- Fix the project deadlines
- Analyse the risks

DELIVERABLES (OUTPUTS)

- PROJECT PLAN:
 - Statement setting out the needs and objectives
 - Functional specifications
 - Description and analysis of possible solutions
 - Project risk analysis (technical, financial, human, legal, natural and economic)
 - Budget estimate for the project as a whole
 - Master schedule (description of possible intermediate stages within the Execution)

phase)

- Project team
- Estimated workload
- Project Work Breakdown Structure (WBS)
- Models

WHO IS RESPONSIBLE FOR THE DELIVERABLES

Compliance of deliverables with requirements (scientific, cost, schedule): **scentfic projectle aber**Deliverables generation: **technical projectle aber**

DECISIONS (COMPLETION OF THE PHASE)

- Decision to launch the Execution phase of the project
- Approval of the Project Plan:
 - Decide on needs and objectives
 - Finalise the functional specifications
 - Select the type of solution to adopt (principles).
 - Validate the risk analysis
 - * Allocate the project budget
 - Validate the master schedule and reporting deadlines
 - Allocate the human resources
 - Validate the Project Work Breakdown Structure
- Finalise membership of the Project Management Committee

Zoom on Budget Control

- Project Cost estimates,
 Project review (2 times
- Monthly review of the PMC board to age proposed by Project
- plus / minus per prowith
 within the Millennie
 with the Program

to fit

Results

NEUTRONS

- Schedule: 1 year delay over 7 years
- Very good control of spending on 70M€ Millennium program: 2014 expenses are 5% larger than 2007 budget allocation
- Technical goals achieved: 23 times more neutrons for Science.
- Such a success gives a very good context to launch a new modernisation program : a 6 years/ 60M€ program

Some lessons Learned

- Technical staff is very cooperative for implementation of Project Management
- Good cooperation from Scientists
- Middle management was the most reluctant, as PM changes Middle management role,
- Directorate support is vital
- Implementation of the Project Management Comitee is vital for project controlling at the Institute level, to prevent major \$\$ problems

A quick view on Industrial Activity at the ILL

Industrial Liaison

• Two way to access ILL:

- Scientific Proposal, to be evaluated through Peer rReview process
- Buy Beam time (typ 20k€/24hours for public instruments, much cheaper for ILL instruments)
- Income : around 200k€/Year

Industrial Liaison staff:

A very small but efficient team backed by external partners:

- J Beaucour, part time working as head of Indus Liaison Office
- 2. Team of <u>part time</u> ILL staff
 - Dunkan Atkins: Tomography and customers interface
 - Martin Walter: contracts
 - Valerie Duchastenier: secretary
 - 7 scientists, expert in their field, as scientific support to customers
- 3. Partners companies: SERMA technology
 - Provide flexible additional ressources and customer interface services
 - Provide specfic services (routine meas.)

Example of Industrial activities at ILL

- Ageing of the structural components u neutron and gamma irradiation?
 - check on the microstructure of the steel in operating nuclear power reactors.
 - The measurements provide quantitative information about the ageing of the steel and contribute to the decision-making process concerning the safe operating lifetime of reactors.
- Under intense radiation, the steel becomes become gradually more brittle
 - Changes in its microstructure.
 - Observation of tiny clusters of copper in the steel.

Improving the performance of car engines

- Optimisation of hardening.
- Finite element calculations need parameters.

The neutron strain scanning technique is a non-destructive method used to measure stresses in the surface and up to several centimetres deep in the material with high lateral resolution.

Flow improvers for Diesel fuels

Keeping vehicles running at very cold temperatures

The photo shows large crystals formed at -13 °C and the same fuel treated with additives which lead to a significant reduction in crystal size.

At low temperatures, the growth of wax crystals block diesel fuel filters and can cause engine stoppage.

Modern diesel fuels contain block-copolymer additives which lead to a significant reduction in crystal size and allow low temperature vehicle operation.

Neutrons results suggest that the supramolecular structure formed by self-assembly of the additives interacts with the alkanes to control crystallisation in diesel fuel.

Magnetic shape memory alloys

- Metals that change their shape in a magnetic field: Actuators, sensors and other devices...
- Combining the shape memory property with ferromagnetism, vastly increases the range of applications.
- Detailed study of the transformation processes that give rise to the shape memory effect.

Non destructive ... Archaeology and palaeontology

A neutron texture analysis performed at the ILL could demonstrate that the axe of 5200-year-old man Ötzi, was manufactured in alternate stages of hot and cold forging.

The analysis of small quantities of egyptian make-up using neutrons and X-rays has proved that besides natural ingredients they also contain lead-based synthesised products. This means that 3000 or 4000 years B.C. Egyptians used chemistry!

IRT NanoElec 2012 - 2019

The IRT NanoElec was founded through a joint venture between the French National Research Agency (ANR) and the CEA.

The institute CEA-Leti acts as global coordinator of the IRT, which involves:

18 partners

Characterization program – Large-scale instruments

6M€ project to Facilitate access ILL, ESRF & CEA/LETI characterisation means,

- Off line preparation labs at Science Building
- On line equipments at ILL and ESRF:
 - a new facility dedicated for industry both at the ILL (APEX); a similar initiative at the ESRF
- Manpower for industry related activities

Partners:

Thanks for your attention

