G4 simulation: where are we?

Marta Ruspa on behalf of Alexander Zokhin

Effect of multiple interactions and multiple scattering through pocket geometry

MI rate $=$
fraction of proton tracks which have an inelastic interaction anywhere along the path of the proton in the spectrometer before the last plane of the last station.

Beware: does not mean that the track is necessarily lost!

Mechanics options

Mechanics options

- "long indent": 7 m long indent, stainless steel window - thickness 0.5 mm

骨 Mechanics options

Version I: 7m long indent

From Krzysztof

Mechanics options

- "long indent": 7 m long indent stainless steel window - thickness 0.5 mm
- "short pocket":
$4 \times 40 \mathrm{~mm}$ long pockets, trapezoidal shape, stainless steel windows - thickness: 0.2 mm

From Krzysztof

Mechanics options

- "long indent":

7 m long indent stainless steel window - thickness 0.5 mm

- "short pockets":
$4 \times 40 \mathrm{~mm}$ long pockets, trapezoidal shape stainless steel windows - tickness: 0.2 mm
- "short rectangular pocket":
$4 \times 40 \mathrm{~mm}$ long pockets, rectangular shape, stainless steel windows - tickness: 0.2 mm

Mechanics options

- "long indent":

7 m long indent stainless steel window - thickness 0.5 mm

- "short pocket":
$4 \times 40 \mathrm{~mm}$ long pockets, trapezoidal shape stainless steel windows - tickness: 0.2 mm
- "short rectangular pocket":
$4 \times 40 \mathrm{~mm}$ long pockets, rectangular shape stainless steel windows - tickness: 0.2 mm
- "long pocket":
$4 \times 200 \mathrm{~mm}$ long pockets, trapezoidal shape, stainless steel windows - tickness: 0.3 mm

Mechanics options

Version IV: 4 short rectangular pockets

Baseline detector geometry

Sequence of single planes with 1 mm air in between.

Single plane unit:

- station dimensions: $84 \times 100 \times 25 \mathrm{~mm}^{3}$
- $1^{\text {st }}$ layer Si thickness: 0.200 mm
- bumpbonding thickness: 0.020 mm
- $2^{\text {nd }}$ layer Si thickness: 0.300 mm
- ceramics thickness: 1.00 mm
- $2^{\text {nd }}$ layer Si plane dimensions: $80 \times 98 \times 2 \mathrm{~mm}^{3}$

Results: multiple interaction rate

MI portion, \%(IP) MI $^{\text {I }}$				
set up	7 m long indent	4 short pockets	4 long pockets	4 short rectangular pockets
variant	1	2	3	4
6 Planes	20.7 ± 0.4	24.1 ± 0.5	27.3 ± 0.5	20.4 ± 0.4
10 Planes	28.6 ± 0.5	31.7 ± 0.6	35.0 ± 0.6	28.1 ± 0.5

- Contribution to MI total rate of $250 \mu \mathrm{~m}$ stainless steel window $\sim 0.24 \%$ (we can have as many as we want!)
- Contribution to MI total rate of 1 mm ceramics ~ 0.5\% (for 10 planes and 4 stations $\rightarrow 20 \%$)
- Contribution to MI total rate of 1 silicon plane ~ 0.2%

Results: multiple scattering

\rightarrow Relative uncertainty on track momentum due to multiple scattering negligible

Effect of multiple interactions of halo protons with the pocket bottom

Effect of multiple interactions of halo protons with the pocket bottom

- Halo protons may interact with the pocket bottom and generate secondaries which may end up in the detector
- These extra tracks may be easy to spot because they obviously have a wrong vertex
- In the following quantify:
- probability that a secondary from a halo proton in the pocket bottom is generated
- rate of potentially lost events
- N.B.: rate of halo protons so far unknown (will be soon available from N. Mokhof)

Effect of multiple interactions of halo protons with the pocket bottom

Protons generated in front of flat pocket part.
\rightarrow e.g. for 3 stations: MI rate $\sim 40 \%$

- One can argue like this: one secondary crosses the planes of one station under large θ : for events with only one secondary there is hope to distinguish tracks from IP from background tracks. Let us call a "good case"an event with ≤ 1 secondary track.
- Furthermore one can assume that a track can be reconstructed using 2 and not all stations.
What is the rate of halo protons with >1 secondary track in at least two stations, i.e. of halo protons that would potentially lead to event losses?
\rightarrow e.g. for 3 stations: \%(halo) loss $=25 \%$
N.B.: 40% of halo protons have MI, but only 25% lead to event loss under the above assumptions.

Effect of multiple interactions of halo protons with the pocket bottom

Let us assume that the number of halo protons is a fraction $0<k<1$ of the number of protons from IP

We compute the fraction of events potentially lost:

```
%(IP)
n_protons(halo)=kn_protons(IP), with 0<k<1 portion of events with halo proton
contamination
%%osses}=(n_protons(IP) (IMI +n_protons(halo) loss)/ n_protons(TP) (Tot ) =
%(IP)
= %(TP)
```


Results: multiple interactions of halo protons with the pocket bottom

```
|set up 
```

Total losses, $\%_{\text {losses }}$

6 Planes	$21 \div 71$	$24 \div 56$	$27 \div 77$	$20 \div 53$
10 Planes	$29 \div 79$	$32 \div 64$	$35 \div 85$	$28 \div 61$

[^0]
Summary

- From the point of view of multiple interactions the only critical thickness in the detector package is that of ceramics
- The effect of multiple scattering on the momentum resolution is negligible
- The option which exhibits the least multiple interaction effect and which is least sensitive to halo protons is that of "4 short rectangular pockets"

Outlook

Estimated time to implement reconstruction algorithms: 2 months, starting from middle of September

Background from N. Mokhof for FP420 location: will re-run from middle of June

From Mimmo et al. (20/04)

3 new proposal, apparently very similar but different in details

- Window inclination: 90°
- Stainless steel window: 0.3 mm

Rainure entourant la decoupe

DDINFN_TO 20/4,06

FP t20 Movide Bowe Ppo 5ingla Steken
DRFFT

DD INFN_To 20/4,06

DRRFT

From Mimmo et al. (20/04)

3 new proposal, apparently very similar but different in details

- Window inclination: 90°
- Stainless steel window: 0.3 mm

Comment from Sasha:
"...I do not see essential peculiarity with respect to our previous pocket configurations which can have specific influence on multiple interactions (MI) and scattering (MSC). For these 3 proposal there are changes on tube radius/thickness and its shape (ellipse/circle)..."

Beam line simulation

MAD input to G4

BDSIM (Beam Delivery System sIMulation - developer: Grahame Blair): from Rob Appleby

particles inside beampipe \rightarrow direct implementation of equations of
motion
particles enter matter $\rightarrow G 4$
developed for ILC beam delivery system, but easy to track and study protons (according to Rob)
protons/background in input, any desired starting distribution of particles
easily adaptable to an hadron machine: LHC lattice should be converted into BDSIM format, close to MAD

Background simulation

MARS15 (developer: Nikolai Mokhof):

from Michele
all elements included
generator: DPMJET
\rightarrow energy and momentum distribution of all particles at any desired depth

Pocket geometry

- general parameters:
- beam pipe (bp) radius: 40 mm
- bp unit length (bpul): $2.8(4.0) \mathrm{m}$
- z-size of flat pocket part(zfpp): 30 mm
- window slope: 15^{0}
- copper coating:
- bp wall thickness: 0.1 mm
- y-thickness of flat pocket part: 0.1 (0.5) mm
- window thickness (cowt) : 0.1 mm
- stainless steel material:
- bp wall thickness: 5 mm
- y-thickness of flat horizontal pocket part: $0.3(2.5) \mathrm{mm}$
some detector station parameters:
- station dimensions: $10 \times 20 \times 25 \mathrm{~mm}^{3}$
- distance between centers of planes: 2.4 mm
- plane dimensions: $10 \times 20 \times 2 \mathrm{~mm}^{3}$

- plane geometry parameters:
- 1-st layer Si thickness: 0.200 mm
- glue thickness: 0.020 mm
- 2-nd layer Si thickness: 0.300 mm
- ceramic thickness : 1.00 mm

$n _p r o t o n s(h a l o)=k n _p r o t o n s(I P)$
with $0<k<1$ portion of events with halo proton contamination
$k=0$: no contamination
$k=1$ every proton from IP is accompanied by a second bgd proton
rate $_{\text {losses }}=\left(n _p r o t o n s(I P)_{M I}+n _p r o t o n s(h a l o)_{\text {loss }}\right) / n _p r o t o n s(I P)_{\text {tot }}=$
$=\operatorname{rate}(I P)_{M I}+\operatorname{rate}(\text { halo })_{\text {loss }} \cdot n _$protons (halo $)_{\text {tot }} / n _$protons $(I P)_{\text {tot }}=$
$=\operatorname{rate}(I P)_{M I}+\mathrm{krate}$ (halo) $)_{\text {loss }}$

From Mimmo

Multiple interactions vs \# planes

- 3 stations, 2.8 m interdistance
\rightarrow MI rate with 10 planes ~ 20\%
\rightarrow MI rate with 6 planes $\sim 15 \%$
\rightarrow Contribution of $250 \mu \mathrm{~m}$ stainless steel window negligible

Multiple interactions vs window thickness

- 3 stations, 2.8 m interdistance
\rightarrow Contribution of $250 \mu \mathrm{~m}$ stainless steel window ~ 1.2%
\rightarrow Contribution of 1 mm stainless steel window ~ 4\%

10um ceramic thickness \rightarrow Si only:
\rightarrow contribution of $\mathrm{Si}<6 \%$
\rightarrow Contribution of 1 mm ceramic $\sim 15 \%$

Multiple interactions vs ceramic thickness

(10 Planes per Station)

Multiple interactions vs ceramic thickness \& number of planes

- 3 stations, 2.8 m interdistance
- Stainless steel window: $250 \mu \mathrm{~m}$

Ct, $m \mathrm{~mm}$	2 Planes	4 Planes	6 Planes	10 Planes
0.4	4.4	6.7	9.1	11.5
0.6	5.2	8.2	11.2	14.5
0.8	6.0	9.6	13.3	17.5
1.0	6.5	10.5	14.5	20.5

$$
c t=\text { ceramic thickness }
$$

Trapezoidal pocke \dagger

- Beam pipe radius: 40 mm
- Beam pipe thickness: 5 mm
- Cu deposit thickness: 0.1 mm
- 3 stations, 2.8 m interdistance
- Horizontal pocket part:
$y=0.4 \mathrm{~mm}$ (st.st. +Cu), $\mathrm{z}=30 \mathrm{~mm}$
- Window inclination: 15°

Multiple scattering: $\sigma^{X Y}$ [$\mu \mathrm{m}$], deviation of track from primary direction at z of Si planes for $2^{\text {nd }}$ and $3^{\text {rd }}$

Set up	6 planes	10 planes	planes		10 planes	
2 2nd	$3^{\text {rd }}$		$2^{\text {nd }}$			
Stainless steel only	$16.9+-0.4$	$23.9+-0.6$	2.6	5.8	3.0	6.8
+ copper deposit	$17.2+-0.4$	$24.4+-0.6$	2.8	6.4	3.1	7.2

Relative uncertainty on track momentum : $(\Delta p / p) \sim \operatorname{tg} \theta \sim 10^{-6} 39$

- Cu deposit thickness: 0.1 mm
- Window inclination: 15°
\rightarrow MI rate ~ 30\% zfpp: 50 mm

MSC: $\sigma_{\text {deviation }}^{X(Y)}, \mu m$

I	II	III	IV
0.02	2.4	5.5	9.3

$$
\begin{aligned}
& (\Delta P / P)_{m s c} \sim t g \theta_{m s c} \sim 10^{-6} \\
& \sigma_{X}^{I P-v t x}=\sigma_{Y}^{I P-v t x}=310 \mu m \sim 0.3 \mathrm{~mm}
\end{aligned}
$$

- Stainless steel: 1% in 1 mm
- Ceramic: 15% in $3 \mathrm{~cm} \rightarrow 0.5 \%$ in 1 mm
- Silicon: 6% in 30 planes, $500 \mu \mathrm{~m}$ for each each, 15 mm in total $\rightarrow 0.4 \%$ in 1 mm

[^0]: variants $1 \& 3$ do not work due to high contamination of halo protons variants $2 \& 4$ can be used but need to reduce st.st. z-size $(16 \rightarrow 12 \mathrm{~cm})$

