FP420 Collaboration Meeting DESY 18th May, 2006

G4 simulation: where are we?

Marta Ruspa on behalf of Alexander Zokhin

1

Effect of multiple interactions and multiple scattering through pocket geometry

MI rate =

fraction of proton tracks which have an inelastic interaction anywhere along the path of the proton in the spectrometer before the last plane of the last station.

Beware: does not mean that the track is necessarily lost!

- "long indent":
 - 7 m long indent, stainless steel window thickness 0.5 mm

From Krzysztof

"long indent":

7 m long indent stainless steel window - thickness 0.5 mm

"short pocket":

4 x 40 mm long pockets, trapezoidal shape, stainless steel windows - thickness: 0.2 mm

"long indent":

7 m long indent stainless steel window - thickness 0.5 mm

- "short pockets":
 4 x 40 mm long pockets, trapezoidal shape stainless steel windows tickness: 0.2 mm
- "short rectangular pocket":
 4 x 40 mm long pockets, rectangular shape, stainless steel windows - tickness: 0.2 mm

Version III: 4 long pockets

"long indent":

7 m long indent stainless steel window - thickness 0.5 mm

- "short pocket":
 4 x 40 mm long pockets, trapezoidal shape stainless steel windows - tickness: 0.2 mm
- "short rectangular pocket":
 4 x 40 mm long pockets, rectangular shape stainless steel windows - tickness: 0.2 mm
- "long pocket":

4 x 200 mm long pockets, trapezoidal shape, stainless steel windows – tickness: 0.3 mm

Version IV: 4 short rectangular pockets

Baseline detector geometry

Sequence of single planes with 1mm air in between.

Single plane unit:

- station dimensions: $84 \times 100 \times 25 \text{ mm}^3$
- 1st layer Si thickness: 0.200 mm
- bumpbonding thickness: 0.020 mm
- 2nd layer Si thickness: 0.300 mm
- ceramics thickness: 1.00 mm
- 2nd layer Si plane dimensions: 80 x 98 x 2 mm³

Results: multiple interaction rate

	М	I portion, %(IP)	MI	
set up	7m long indent	4 short pockets	4 long pockets	4 short rectangular pockets
variant	1	2	3	4
6 Planes	20.7±0.4	24.1±0.5	27.3±0.5	20.4±0.4
10 Planes	28.6±0.5	31.7±0.6	35.0±0.6	28.1±0.5

- Contribution to MI total rate of 250 µm stainless steel window ~ 0.24% (we can have as many as we want!)
- Contribution to MI total rate of 1 mm ceramics ~ 0.5%
 (for 10 planes and 4 stations → 20%)
- Contribution to MI total rate of 1 silicon plane ~ 0.2%

Station(after) number

Results: multiple scattering

 \rightarrow Relative uncertainty on track momentum due to multiple scattering negligible

Effect of multiple interactions of halo protons with the pocket bottom

Effect of multiple interactions of halo protons with the pocket bottom

- Halo protons may interact with the pocket bottom and generate secondaries which may end up in the detector
- These extra tracks may be easy to spot because they obviously have a wrong vertex
- In the following quantify:
 - probability that a secondary from a halo proton in the pocket bottom is generated
 - rate of potentially lost events
- N.B.: rate of halo protons so far unknown (will be soon available from N. Mokhof)

Effect of multiple interactions of halo protons with the pocket bottom

Protons generated in front of flat pocket part. \rightarrow e.g. for 3 stations: MI rate ~ 40%

• One can argue like this: one secondary crosses the planes of one station under large θ : for events with only one secondary there is hope to distinguish tracks from IP from background tracks. Let us call a "good case" an event with ≤ 1 secondary track.

 Furthermore one can assume that a track can be reconstructed using 2 and not all stations.

What is the rate of halo protons with > 1 secondary track in at least two stations, i.e. of halo protons that would potentially lead to event losses?

 \rightarrow e.g. for 3 stations: %(halo)_{loss} = 25%

N.B.: 40% of halo protons have MI, but only 25% lead to event loss under the above assumptions.

Effect of multiple interactions of halo protons with the pocket bottom

Let us assume that the number of halo protons is a fraction O < k < 1 of the number of protons from IP

We compute the fraction of events potentially lost:

 $(IP)_{MI} = n_{protons}(IP)_{MI}/n_{protons}(IP)_{tot}$ n_protons(halo)= k n_protons(IP), with O< k < 1 portion of events with halo proton contamination

 $%_{losses}$ = (n_protons(IP)_{MI} + n_protons(halo)_{loss})/ n_protons(IP)_{tot} = = %(IP)_{MI} + %(halo)_{loss} · n_protons(halo)_{tot} / n_protons(IP)_{tot} = = %(IP)_{MI} + k %(halo)_{loss}

Results: multiple interactions of halo protons with the pocket bottom

	ant un 7m lang indent 1 abort periode 1 lang periode 1 abort restangu							llor pooko	+0		
	set up	711110	ong indent	4 SHOLL	JOCKEIS	4 10119	DUCKEIS	4 SHOR	rectange	лаг роске	เร
Total losses											
			1(105565	losses		-				_
	6 Planes		21÷7	1	24÷	-56	2	7÷77		20÷53	
	10 Planes	S	29 : 7	9	32÷	64	3	5÷85		28÷61	
variants 1 $\&$ 3 do not work due to high contamination of halo protons											
		varia	ants 2 & 4 ca	in be used	but need	to reduce	e st.st. z-s	size (16 \rightarrow	12cm)		

20

Summary

- From the point of view of multiple interactions the only critical thickness in the detector package is that of ceramics
- The effect of multiple scattering on the momentum resolution is negligible
- The option which exhibits the least multiple interaction effect and which is least sensitive to halo protons is that of "4 short rectangular pockets"

Outlook

Estimated time to implement reconstruction algorithms: 2 months, starting from middle of September

Background from N. Mokhof for FP420 location: will re-run from middle of June

From Mimmo et al. (20/04)

3 new proposal, apparently very similar but different in details

- Window inclination: 90°
- Stainless steel window: 0.3 mm

M. Ruspa - FP420 meeting, DESY 18/05/06

FP420MovBPSS_RF-Sim. Page 2 of 4

M. Ruspa - FP420 meeting, DESY 18/05/06

From Mimmo et al. (20/04)

3 new proposal, apparently very similar but different in details

- Window inclination: 90°
- Stainless steel window: 0.3 mm

Comment from Sasha:

"...I do not see essential peculiarity with respect to our previous pocket configurations which can have specific influence on multiple interactions (MI) and scattering (MSC). For these 3 proposal there are changes on tube radius/thickness and its shape (ellipse/circle)..."

Beam line simulation

MAD input to G4

BDSIM (Beam Delivery System sIMulation - developer: Grahame Blair): <u>from Rob Appleby</u>

particles inside beampipe \rightarrow direct implementation of equations of

particles enter matter $\rightarrow G4$

developed for ILC beam delivery system, but easy to track and study protons (according to Rob)

motion

protons/background in input, any desired starting distribution of particles

easily adaptable to an hadron machine: LHC lattice should be converted into BDSIM format, close to MAD

Background simulation

MARS15 (developer: Nikolai Mokhof): from Michele

all elements included

generator: DPMJET

→ energy and momentum distribution of all particles at any desired depth

Pocket geometry

- general parameters:
 - beam pipe (bp) radius: 40 mm
 - bp unit length (bpul): 2.8(4.0) m
 - z-size of flat pocket part(zfpp): 30 mm
 - window slope: 15°

copper coating:

- bp wall thickness: 0.1 mm
- y-thickness of flat pocket part: 0.1(0.5) mm
- window thickness (cowt) : 0.1 mm

stainless steel material:

- bp wall thickness: 5 mm
- y-thickness of flat horizontal pocket part: 0.3(2.5) mm
- window thickness(sswt) : 0.25 mm

plane geometry parameters:

- 1-st layer Si thickness: 0.200 mm
- glue thickness: 0.020 mm
- 2-nd layer Si thickness: 0.300 mm
- ceramic thickness : 1.00 mm

Geometry XML files verified through visualization

have a look on MI & MSC for updated set up

- some detector station parameters:
 - station dimensions: $10 \times 20 \times 25 mm^3$
 - distance between centers of planes: 2.4 mm
 - plane dimensions: $10 \times 20 \times 2 mm^3$
 - number of planes: 10(6)

Multiple interactions from halo protons going through horizontal part of market

Protons generated in front of flat pocket part.

 \rightarrow MI rate ~ 40%

How many secondaries go in the detector?

 \rightarrow MI hit rate per plane ~ 35% for 2nd station and ~55% for 3rd station

Detector acceptance in X between -5 and +5 mm


```
rate(IP)_{MI} = n_{protons}(IP)_{MI}/n_{protons}(IP)_{tot}
rate(halo)_{loss} = n_{protons}(halo)_{loss}/n_{protons}(halo)_{tot}
```

```
n_protons(halo)= k n_protons(IP)
```

```
with O< k < 1 portion of events with halo proton contamination k=0: no contamination
```

k=1 every proton from IP is accompanied by a second bgd proton

 $rate_{losses} = (n_protons(IP)_{MI} + n_protons(halo)_{loss}) / n_protons(IP)_{tot} = rate(IP)_{MI} + rate(halo)_{loss} \cdot n_protons(halo)_{tot} / n_protons(IP)_{tot} = rate(IP)_{MI} + k rate(halo)_{loss}$

Mechanics options input to 64

From Mimmo

2

0

1.5

2

2.5

3

Window thickness, mm.

3.5

0

0.2

0.4

0.6

0.8

Ceramic thickness, mm.

1

Multiple interactions vs ceramic thickness & number of planes

- 3 stations, 2.8 m interdistance
- Stainless steel window: 250 µm

Ct,mm	2 Planes	4 Planes	6 Planes	10 Planes
0.4	4.4	6.7	9.1	11.5
0.6	5.2	8.2	11.2	14.5
0.8	6.0	9.6	13.3	17.5
1.0	6.5	10.5	14.5	20.5

ct = ceramic thickness

Trapezoidal pocket

- Beam pipe radius: 40mm
- Beam pipe thickness: 5 mm
- Cu deposit thickness: 0.1 mm
- 3 stations, 2.8 m interdistance
- Horizontal pocket part:
- y = 0.4 mm (st.st. + Cu), z=30 mm

MI rate

Window inclination: 15°

Multiple scattering: σ^{XY} [µm], deviation of track from primary direction at z of Si planes for 2nd and 3rd

Set up	6 planes	10 planes	6 planes		10 planes	
			2 nd	3 rd	2 nd	3 rd
Stainless steel only	16.9 +- 0.4	23.9 +- 0.6	2.6	5.8	3.0	6.8
+ copper deposit	17.2 +- 0.4	24.4 +- 0.6	2.8	6.4	3.1	7.2

Relative uncertainty on track momentum : $(\Delta p/p) \sim tg \theta \sim 10^{-6}$ ³⁹

Circular pocket

- Beam pipe radius: 33.35 mm
- Beam pipe thickness: 5 mm
- Cu deposit thickness: 0.1 mm
- Window inclination: 15°

 \rightarrow MI rate ~ 30%

$$\begin{split} (\Delta P/P)_{msc} &\sim tg\theta_{msc} \sim 10^{-6} \\ \sigma_X^{IP-vtx} &= \sigma_Y^{IP-vtx} = 310 \mu m \sim 0.3 mm \end{split}$$

- Stainless steel: 1% in 1mm
- Ceramic: 15% in 3 cm \rightarrow 0.5% in 1 mm
- Silicon: 6% in 30 planes, 500 µm for each each, 15 mm in total
 → 0.4% in 1 mm