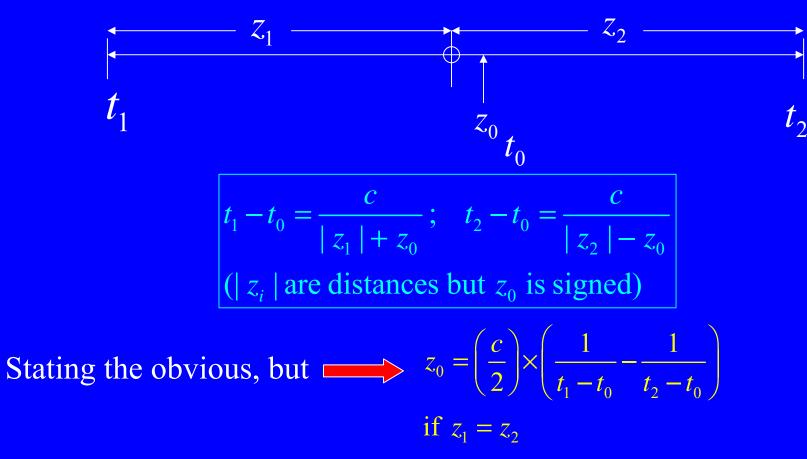
Timing and Pile-up Considerations

Pile-up in **trigger** and pile-up **off-line** (HLT) very different issues. Here I consider only **off-line** pile-up rejection.

- 1) Kinematics (e.g. JJ ... more in WW/ZZ):
- $\frac{MM(pp) > \approx M(Central); E_T(J1) \approx E_T(J2); \Delta \phi(JJ) \approx 180^{\circ}}{2}$ Vertexing in space (z) using pp time ... we know this but:


Reference time (jitter-free clock) essential.

3) Rejecting vertices in space with forward tracks (track-rap-gap)

4) Vertexing in time (space-time!)

Apologies if I am CMS-specific. ATLAS people should consider similar possibilities.

<u>Reference Timing for FP420</u>

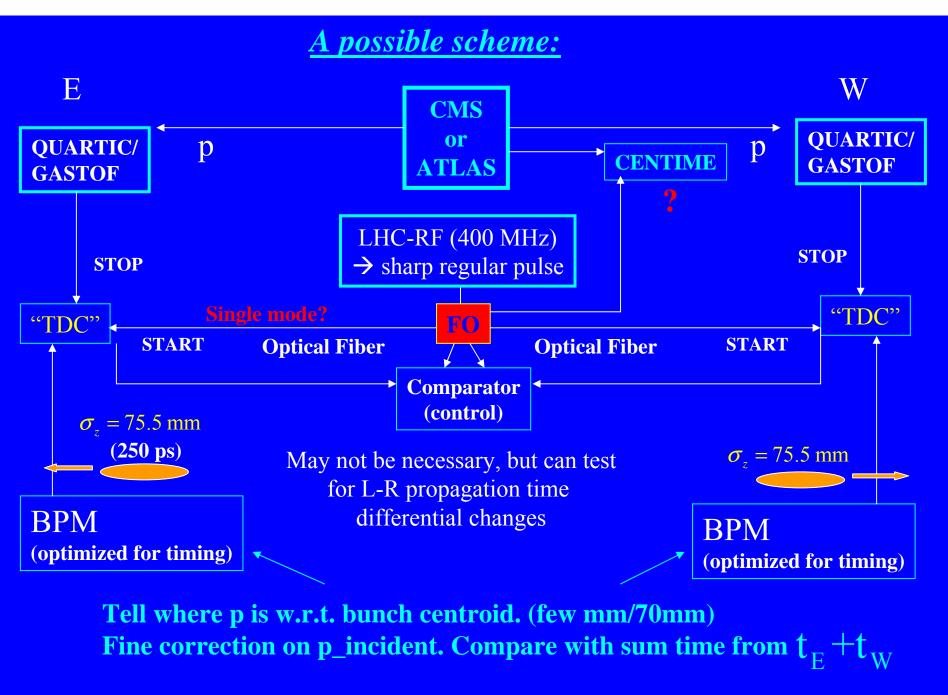
The reference time, given by a local (to FP420) "clock" must

- (a) have no differential jitter (at few ps level) between L and R stations
- (b) be calibrate-able

fix
$$z_0 = 0$$
 and $\left(\frac{dz_0}{d - TDC}\right)$

Mike Albrow

Timing and Pile-up Considerations


 \rightarrow We must have a good reference signal free of jitter between E and W stations. This is as important as the detectors themselves. Temperature control? Return path control?

 \rightarrow To use 220m stations together with 420m, these need timing too.

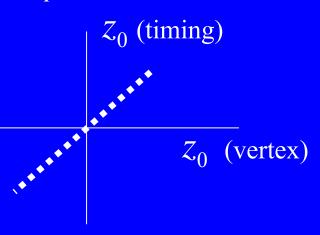
→ Position of interaction in bunch: tight (?) correlation with position in time of p wrt bunch center at 420, because no RF cavities intervene.

 \rightarrow Need to discuss with LHC RF/clock experts.

→ Upgrade for very high Lum (or earlier?) CENTIME ?

Mike Albrow

Timing and Pile-up Considerations


Assuming jitter problem solved, Calibrate with real DPE events.

Want low-ish Lum, enough single interactions $L \leq 5 \times 10^{32} cm^{-2} s^{-1}$ (maybe want a special low-L bunch crossing later)

Trigger on two forward rap gaps - needs better coverage $6.5 < |\eta| < 9.5$ plus central state (could be dijets, or just ΣE_T)

"Know" central vertex and z_0

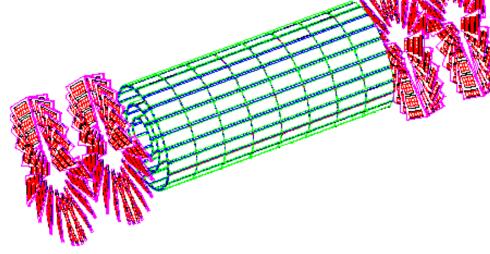
Ambiguities give much background if do not select single interactions. Could require (e.g.): $\xi_1 \xi_2 > \left(\frac{M_{JJ}^2}{\Gamma}\right)$

This is Calibration!

Pile-up rejection by Forward Tracking

Say exclusive H \rightarrow bb has ~ 0 tracks for $|\eta| > 2.0 (15.4^{\circ})$ Any (?) vertex with tracks **both** sides $-3 < \eta < -2$ & $2 < \eta < 3$ is background. Would prefer $3 < |\eta| < 4$ but no pixel coverage.

SIMULATION NEEDED

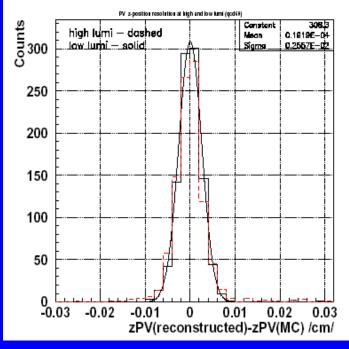

CMS Pixel Detector

- 3 barrel layers,
 at startup (low lumi.).
- 2 endcap disks, maybe 1 at startup, upgrade to 3 disks.
- 3) 720 barrel modules, 16 ROCs each.
- 672 endcap modules, 2–10 ROCs each.
- 5) Pixel size 100μm*150μm, (baseline 150μm*150μm).

2: $1.85 < |\eta| < 2.74$

1: $1.57 < |\eta| < 2.45$

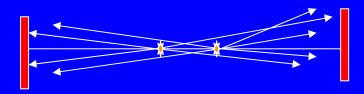
3: $2.07 < |\eta| < 2.97$



Mike Albrow

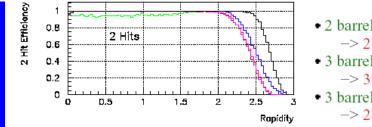
Timing and Pile-up Considerations

Can separate two vertices within ~ 150 um in z $\sigma_z = 26 \,\mu\text{m}$ This is for **central barrel.** For Endcap pixels? To study, but $\sigma_z \approx 300 - 400 \,\mu\text{m}$


Very good primary vertex reconstruction

In this case 26µm. Very close to the best resolution with tracks!

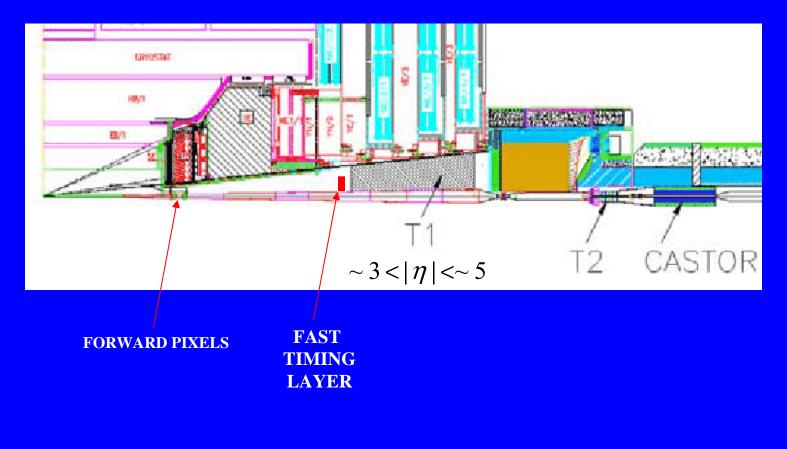
For all channels studied the signal primary vertex position resolution is $< 50\mu$ m.


Pile–up primary vertices can be also found if they have at least 2 charged tracks above 1GeV.

Find vertices and reject (track-rap-gap)

Need to swim tracks through Mag Field (small angle)

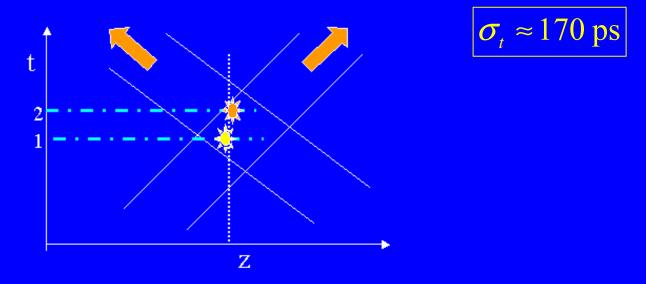
2 and 3 hit pixel efficiency



- 2 barrels + 1 disk at startup -> 2 hit coverage
 3 barrels + 2 disks -> 3 hit coverage
- 3 barrels + 3 disks upgrade -> 2&3 hit coverage

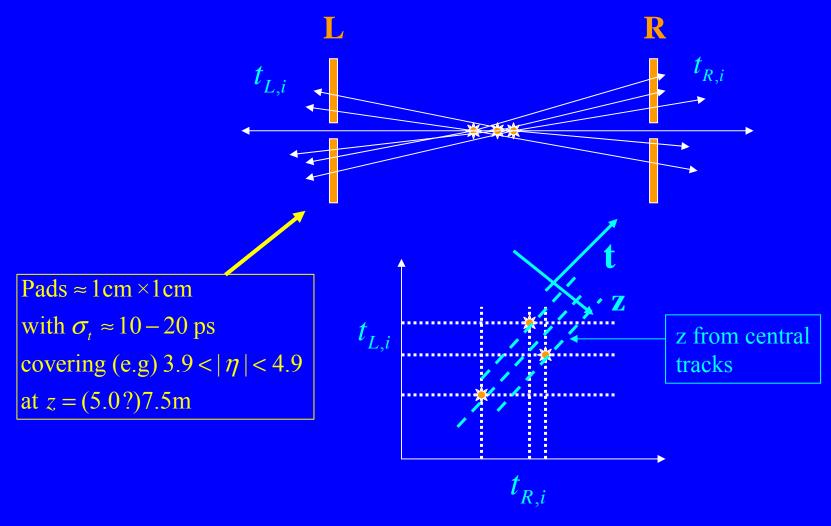
Mike Albrow

Timing and Pile-up Considerations


What is efficiency for $H \rightarrow b\overline{b}$ if veto 2 - 3? Would prefer further forward, but tracking (T1) not nearly good enough.

Mike Albrow

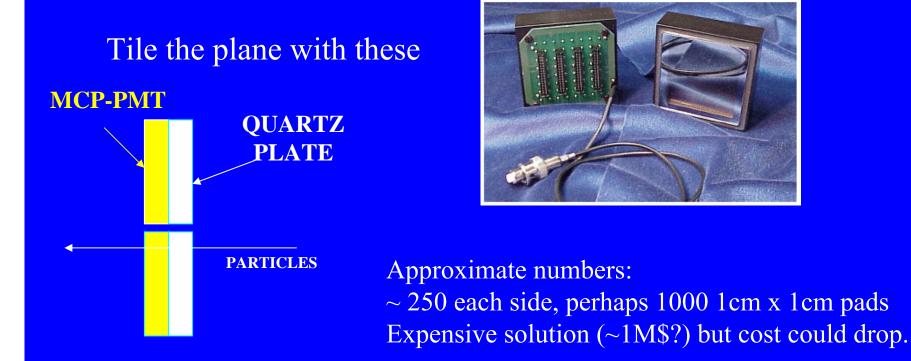
<u>Vertexing in Spacetime</u>


Matching z(from pp timing) with z(from central di-jet/WW/ZZ) is 1-dimensional. Interactions are spread also in time.

Can use this extra dimension if we know time of interaction. High precision (~ 10 ps) counters around central beam pipe not on unless one can invent a fast detector < few % Xo !

But can go forward and time the non-central exclusive B/G events!

This may be dreaming, maybe not for Day 1, but P/U worse in 2010!


This can identify (in principle) interactions that have particles in both L and R detectors. <u>All are background for CEX!</u>

Mike Albrow

Timing and Pile-up Considerations

Fast Timing Layer Detectors

~ Existence proof: Burle 48mm x 48mm MCP PMT (Micro-channel plate PMT) as for QUARTIC Developing 10 micron channels, approaching 10 ps.

Questions: Simulation, acceptance, background crap and especially <u>RADIATION HARDNESS</u>. Another solution?

Mike Albrow

Timing and Pile-up Considerations

<u>Summary</u>

Assuming we can trigger at high luminosity, <n> large, pile-up in data-on-tape probably very high, but for Central Exclusive Production (unlike HSD) we have many handles:

1) kinematics,

- 2) FP timing,
- 3) Track-rap-gap vertexing
- 4) Forward timing layers ?

3 & 4 are just ideas and may be shot down in flames. All need serious simulation.