Backgrounds at FP420

Henri Kowalski
DESY
$18^{\text {th }}$ of May 2006

LHC parameters

Length	26.6 km
Nr. of bunches	2808
Nr. of particle/bunch	$1.15 \mathbf{1 0}^{11}$
Frequency	40 MHz
Inter-bunch distance	25 nsec

Maximal Luminosity $10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Coasted Beam Optics

x - transverse deviation from the beam position x, - transverse angular deviation
 β-amplitude function, Ψ-phases, D-dispersion can be obtained from the LHC Optic Webpage Coasted beam optics is considerably easier to handle than ray tracking in MAD
x, x^{\prime} are moving on Phase Ellipse

$$
\alpha \neq 0 \quad \sigma_{x}=\sqrt{\varepsilon \beta_{x}} \quad \sigma_{x^{\prime}}=\sqrt{\frac{\varepsilon\left(1+\alpha_{x}^{2}\right)}{\beta_{x}}}
$$

LHC High Luminosity Optics

420 m Detectors

Missing dipole in the lattice - 14 m space. With a bypass $\sim 10 \mathrm{~m}$ space remains for warm detectors sitting in Roman Pots
detector resolution should be better than the beam spread at 420 m

$$
\begin{aligned}
& \sigma_{x} \approx 250 \mu \mathrm{~m} \quad \sigma_{y} \approx 160 \mu \mathrm{~m} \\
& \sigma_{x^{\prime}, y^{\prime}} \approx 4.5 \mu \mathrm{rad}
\end{aligned}
$$

angular measurement can be performed with silicon detectors spaced 8 m apart, with $\sim 10 \mu \mathrm{~m}$ resolution. Size of the detectors: $\sim 30 \mathrm{~mm} * 20 \mathrm{~mm}$ alignment with physics reactions (much easier than at HERA, high statistics) simple estimate of the proton momentum resolution:

$$
\begin{array}{lll}
\Delta x_{I P} / x_{I P} \sim 8 \% \quad \text { for } x_{I P} \approx 0.002 & \sigma_{x} / 3 \mathrm{~mm} \\
\Delta x_{I P} / x_{I P} \sim 1.5 \% \quad \text { for } x_{I P} \approx 0.01 & \sigma_{x} / 15 \mathrm{~mm} \\
& & \\
\Delta p_{T} \sim 200 \mathrm{MeV} & &
\end{array}
$$

Reconstruction of Kinematic Variables

similar to $\mathrm{H} 1-\mathrm{VFPS}$

Calibration using events with reconstructed $X_{\text {IP1 }}$ and $x_{I P 2}$ in CD, e.g EDD with $\sigma \sim O(1) \mu b$

Exploit $t=0$ peak for alignment

$$
x_{I P 1}=\frac{M}{\sqrt{s}} e^{y} \quad x_{I P 2}=\frac{M}{\sqrt{s}} e^{-y}
$$

$$
\chi_{\text {calib }}^{2}=\frac{\theta_{x}^{2}}{\sigma_{\theta_{x}}^{2}}+\frac{\left(x_{I P}-x_{I P}^{C D}\right)^{2}}{\sigma_{x_{I P}-x_{I P}^{C D}}^{2}}
$$

Minimize χ^{2}

$$
\chi^{2}=\left(x_{i}-x_{i}\left(\theta_{x}, x_{I P}\right) \cdot c_{i j}^{-1} \cdot\left(x_{j}-x_{j}\left(\theta_{x}, x_{I P}\right)\right)\right.
$$

H1 experience with VFPS - Real evaluation should take into account nonlinearities and correlations between the vertical and horizontal planes due to sextupoles and higher order magnets (Pierre van Mechelen)

Background Reactions

Main limits on the beam lifetime at LHC is due to strong interactions $\sigma_{\text {tot }} \sim \mathbf{O}(100) \mathrm{mb}$

$$
\left(L=10^{34} \mathrm{~cm}^{-2} \sec ^{-1}\right) \cdot\left(\sigma=100 \cdot 10^{-3} \cdot 10^{-24} \mathrm{~cm}^{2}\right)=10^{9} \text { events } / \mathrm{sec}
$$

Beam lifetime $\quad 2808 \cdot 1.15 \cdot 10^{11} /\left(2 \cdot 10^{9} \cdot 3600\right) \sim \underline{O(40)}$ hours
Number of interactions per bunch crossing

$$
\begin{aligned}
N_{\text {interactions }} & =10^{9} \text { events } / \mathrm{sec} / 40 \mathrm{MHz}=25 \\
N_{\text {vertex }} & =0.7 \cdot 25=19
\end{aligned}
$$

Elastic scattering - $\sigma_{e l} \sim O(30) \mathrm{mb}$

Inclusive scattering - $\sigma_{\text {inc }} \sim O(50) \mathrm{mb}$

Proton dissociation - $\sigma_{e l} \sim 2 O(10) \mathrm{mb}$ for $x_{I P} \sim 1-30 \%$ Main source of the machine background. Leads to a rate of $O\left(10^{8}\right)$ forward protons/sec. Attention!!! It is above the magnet quench limit of 810^{6} protons $/ \mathrm{m} / \mathrm{sec}$

I. Baishev,

LHC Project Note 240, 208
J.B. Jeanneret, G.R. Stevenson

Central Detector:

Physics background from proton dissociation reactions

FP420 detector sees protons with $x_{I P} \sim 0.2-1.5 \%$ and $\sigma_{\text {p-dis }} \sim 1 \mathrm{mb}$ At luminosity of $10^{34} \mathrm{~s}^{-1} \mathrm{~cm}^{2}$ there will be $\sim 10^{7}$ protons/sec
~ 0.25 protons per bunch crossing
However, these protons are produced in a soft interaction together with a particle cloud of a mass $M_{X} \sim 700-1700 \mathrm{GeV}$. Such a large mass cannot escape undetected in the central detector.

Beam Halo background from beam-beam tune shift

In bunch-bunch collision the particle of one bunch see the other bunch as a nonlinear lens.
Focusing properties are changing => protons of large amplitude
are getting out of tune after many crossings
Estimate of the proton loss: \# protons / beam lifetime (40h)

1 beam halo proton per ~ 80 bunches at the top luminosity Presumably even considerably smaller in the 420 m region, in the shadow of the incoming collimator, after D2 (R. Assmann)

