Backgrounds at FP420

Henri Kowalski DESY 18th of May 2006

LHC parameters

Length	26.6 km
Nr. of bunches	2808
Nr. of particle/bunch	1.15 10 ¹¹
Frequency	40 MHz
Inter-bunch distance	25 nsec

Maximal Luminosity -10³⁴ cm⁻² s⁻¹

Coasted Beam Optics

 β -amplitude function, Ψ -phases, D-dispersion can be obtained from the LHC Optic Webpage Coasted beam optics is considerably easier to handle than ray tracking in MAD

LHC High Luminosity Optics

Missing dipole in the lattice – 14 m space. With a bypass ~10 m space remains for warm detectors sitting in Roman Pots

detector resolution should be better than the beam spread at 420 m

$$\sigma_x \approx 250 \,\mu \text{m}$$
 $\sigma_y \approx 160 \,\mu \text{m}$
 $\sigma_{x',y'} \approx 4.5 \,\mu \text{rad}$

angular measurement can be performed with silicon detectors spaced 8 m apart, with ~10 μ m resolution. Size of the detectors: ~30 mm * 20 mm alignment with physics reactions (much easier than at HERA, high statistics) simple estimate of the proton momentum resolution:

$\Delta x_{IP} / x_{IP} \sim 8\%$ for $x_{IP} \approx 0.002$	σ_x / 3mm
$\Delta x_{IP} / x_{IP} \sim 1.5\%$ for $x_{IP} \approx 0.01$	$\sigma_x/15mm$
$\Delta p_T \sim 200 \mathrm{MeV}$	

Reconstruction of Kinematic Variables similar to H1-VFPS

Calibration using events with reconstructed x_{IP1} and x_{IP2} in CD, e.g EDD with $\sigma \sim O(1) \mu b$

$$x_{IP1} = \frac{M}{\sqrt{s}} e^{y} \qquad \qquad x_{IP2} = \frac{M}{\sqrt{s}} e^{-y}$$

$$\chi^{2}_{calib} = \frac{\theta^{2}_{x}}{\sigma^{2}_{\theta_{x}}} + \frac{(x_{IP} - x_{IP}^{CD})^{2}}{\sigma^{2}_{x_{IP} - x_{IP}^{CD}}}$$

Minimize
$$\chi^2$$

Exploit t = 0 peak for alignment

$$\chi^2 = (x_i - x_i(\theta_x, x_{IP}) \cdot c_{ij}^{-1} \cdot (x_j - x_j(\theta_x, x_{IP}))$$

H1 experience with VFPS - Real evaluation should take into account nonlinearities and correlations between the vertical and horizontal planes due to sextupoles and higher order magnets (Pierre van Mechelen)

Background Reactions

Physics background from proton dissociation reactions

$$\sigma_{p-dis} = c \cdot \int_{x_{IP}^{min}}^{x_{IP}^{max}} 1/x_{IP} = \ln(x_{IP}^{max}) - \ln(x_{IP}^{min}) \approx c \cdot 16 = 8mb$$

$$\Rightarrow c = 0.5mb$$

$$x_{IP}^{min} = M_{min}^2 / 4 \cdot p^2 = 1.5 / 4 \cdot 7000^2 = 7.7 \cdot 10^{-9} \qquad x_{IP}^{max} \approx 0.1$$

FP420 detector sees protons with $x_{IP} \sim 0.2 - 1.5$ % and $\sigma_{p-dis} \sim 1$ mb At luminosity of 10³⁴ s⁻¹ cm² there will be ~ 10⁷ protons/sec ~ 0.25 protons per bunch crossing

However, these protons are produced in a soft interaction together with a particle cloud of a mass $M_X \sim 700 - 1700 \text{ GeV}$. Such a large mass cannot escape undetected in the central detector.

Beam Halo background from beam-beam tune shift

In bunch-bunch collision the particle of one bunch see the other bunch as a nonlinear lens. Focusing properties are changing => protons of large amplitude

are getting out of tune after many crossings

Estimate of the proton loss: # protons / beam lifetime (40h)

