Progress in Lattice a new landscape

Aida X. El-Khadra (University of Illinois)
$15^{\text {th }}$ International Conference on B-Physics at Frontier:
Machines (Beauty 2014), Edinburgh, 14-18 July 2014

Progress in Lattice © C
 a new landscape

Thanks to better methods (algorithms, formalism/theoretical understanding) and significant increases in computational resources we now have a growing number of results for
its simple quantities with unprecedented precision
new quantities (two hadron systems, resonances, ...) with control over systematic errors

Progress in Lattice बic

highlights of

Thanks to better methods (algorithms, formalism/theoretical understanding) and significant increases in computational resources we now have a growing number of results for
its simple quantities with unprecedented precision
new quantities (two hadron systems, resonances, ...) with control over systematic errors

Lattice 2014 in NYC, June 23-28 2014

Outline

- Motivation and introduction
© Simple quantities with single, (almost) stable hadrons
it low-lying QCD spectrum
weak decays (leptonic, semileptonic, mixing)
\rightarrow CKM, BSM phenomenology
is high precision \rightarrow including QED
- Beyond simple quantities
it $K \rightarrow \pi \pi$ amplitudes and Δm_{K}
resonances, ...
© Conclusions \& Outlook

Why Lattice QCD?

generic weak process involving hadrons:
$($ experiment $)=($ known $) \times($ CKM elements $) \times($ had. matrix element $)$
$\Delta m_{d(s)}$
$\frac{d \Gamma(B \rightarrow \pi \ell \nu)}{d q^{2}}, \frac{d \Gamma(D \rightarrow K \ell \nu)}{d q^{2}}, \ldots$
$\frac{d \Gamma\left(B_{(s)} \rightarrow D_{(s)}^{(*)} \ell \nu\right)}{d \omega}$,
$\Gamma_{K \ell 3}, \Gamma_{K \ell 2}, \ldots$
$\quad \vdots$

Lattice QCD

parameterize the ME in terms of form factors, decay constants, bag parameters, ...

Why Lattice QCD?

Laiho, Lunghi \& Van de Water (Phys.Rev.D81:034503,2010), E. Lunghi, private comm.

The (red, yellow, green and blue) error bands are (still) dominated by theory errors, in particular by errors on hadronic matrix elements calculated in LQCD.

Why Lattice QCD?

Laiho, Lunghi \& Van de Water (Phys.Rev.D81:034503,2010), E. Lunghi, private comm.

The (red, yellow, green and blue) error bands are (still) dominated by theory errors, in particular by errors on hadronic matrix elements calculated in LQCD.

Introduction to Lattice QCD

$$
\langle\mathcal{O}\rangle \sim \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} A \mathcal{O}(\psi, \bar{\psi}, A) e^{-S} \quad S=\int d^{4} x\left[\bar{\psi}(D \mathcal{D}+m) \psi+\frac{1}{4}\left(F_{\mu \nu}^{a}\right)^{2}\right]
$$

use monte carlo methods (importance sampling) to evaluate the integral.
Note: Integrating over the fermion fields leaves $\operatorname{det}(\mathbb{D}+m)$ in the integrand. The correlation functions, \mathcal{O}, are then written in terms of $(\mathbb{D}+m)^{-1}$ and gluon fields.
steps of a lattice QCD calculation:

1. generate gluon field configurations according to $\operatorname{det}(D+m) e^{-S}$
2. calculate quark propagators, $\left(\mathbb{D}+m_{q}\right)^{-1}$, for each valence quark flavor and source point
3. tie together quark propagators into hadronic correlation functions (usually 2 or 3pt functions)
4. statistical analysis to extract hadron masses, energies, hadronic matrix elements, from correlation functions
5. systematic error analysis

systematic error analysis

...of lattice spacing, chiral, and finite volume effects is based on EFT (Effective Field Theory) descriptions of QCD \rightarrow ab initio

The EFT description:
© provides functional form for extrapolation (or interpolation)
Q can be used to build improved lattice actions/methods

- can be used to anticipate the size of systematic effects

To control and reliably estimate the systematic errors
Q repeat the calculation on several lattice spacings, spatial volumes, light quark masses

systematic error analysis

...of lattice spacing, chiral, and finite volume effects is based on EFT (Effective Field Theory) descriptions of QCD \rightarrow ab initio

The EFT description:
Q provides functional form for extrapolation (or interpolation)
Q can be used to build improved lattice actions/methods

- can be used to anticipate the size of systematic effects

To control and reliably estimate the systematic errors
Q repeat the calculation on several lattice spacings, spatial volumes, light quark masses
see the backup slides for more details on:
\downarrow EFT description of discretization effects
\downarrow strategies for heavy quark methods
\uparrow light quark mass effects, a.k.a chiral extrapolation
\checkmark finite volume effects

systematic error analysis

For example, set of ensembles by MILC collaboration

Five collaborations have now generated sets of ensembles that include sea quarks with physical light-quark masses:

PACS-CS, BMW, MILC, RBC/UKQCD, ETM

Strategy

- Lattice QCD action has the same free parameters as continuum QCD: quark masses and α_{s}
- use experimentally measured hadron masses as input, for example: π, K, D_{s}, B_{s} mesons for u, d, s, c, b quark masses
- need an experimental input to determine the lattice spacing (a) in GeV : 2 S-1S splitting in Y system, f_{π}, Ω, Ξ mass, \ldots
this also determines α_{s}
- lattice QCD calculations of all other quantities should agree with experiment ...

Simple quantities in LQCD

Stable (or almost stable) hadrons, masses and amplitudes with no more than one initial (final) state hadron, for example:

- $\pi, K, D, D_{s}, B, B_{s}$ mesons
masses, decay constants, weak matrix elements for mixing, semileptonic and rare decay form factors
- charmonium and bottomonium ($\left.\eta_{c}, J / \psi, h_{c}, \ldots, \eta_{b}, \mathrm{Y}(1 \mathrm{~S}), \mathrm{Y}(2 \mathrm{~S}), ..\right)$ states below open D / B threshold masses, leptonic widths, electromagnetic matrix elements

This list includes low-lying hadron spectrum and most of the important quantities for CKM physics.
Excluded are ρ, K^{*} mesons and other resonances.

Simple quantities in LQCD

Focus on results with complete error budgets and reliable systematic error estimates.

> Tow-lying hadron spectrum \rightarrow quark masses, as
> weak decays (leptonic, semileptonic, mixing)
> \rightarrow CKM, BSM phenomenology
> is high precision \rightarrow including QED

Low-lying hadron spectrum

A. Kronfeld (Annu. Rev. Part. \& Nucl. Sci, arXiv:1203.1204, updated)

$\pi \ldots \Omega:$ BMW, MILC, PACS-CS, QCDSF; $\eta-\eta^{\prime}:$ RBC, UKQCD, Hadron Spectrum (ω);
D, B : Fermilab, HPQCD, Mohler-Woloshyn

Low-lying hadron spectrum

A. Kronfeld (Annu. Rev. Part. \& Nucl. Sci, arXiv:1203.1204, updated)

$\pi \ldots \Omega:$ BMW, MILC, PACS-CS, QCDSF; $\eta-\eta \eta^{\prime}:$ RBC, UKQCD, Hadron Spectrum (ω);
D, B : Fermilab, HPQCD, Mohler-Woloshyn

Simple quantities in LQCD

Focus on results with complete error budgets and reliable systematic error estimates.
\approx low-lying hadron spectrum \rightarrow quark masses, α_{s}
i weak decays - leptonic, semileptonic, mixing
\checkmark Kaons

- D mesons
$\checkmark B$ mesons
\rightarrow CKM, BSM phenomenology
is high precision \rightarrow including QED

Leptonic K, D, B decays

example: $K^{+} \rightarrow \mu^{+} \nu_{\mu}$

$$
\Gamma\left(K^{+} \rightarrow \mu^{+} \nu_{\mu}\right)=(\text { known }) \times\left(\left|V_{u s}\right|^{2}\right) \times f_{K^{+}}^{2}
$$

Q use experiment + LQCD input for determination of CKM element
Q same for $B\left(\left|V_{u b}\right|\right)$ and $D_{(s)}\left(\left|V_{c d(s)}\right|\right)$ mesons
Q ratios for example $f_{K^{+}} / f_{\pi^{+}}$: statistical and systematic errors tend to cancel.

semileptonic K, D, B decays

example: $K^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}$

$$
\Gamma_{K \ell 3}=(\text { known }) \times\binom{\text { phase }}{\text { space }} \times\left(1+\delta_{\mathrm{EM}}^{K \ell}+\delta_{\mathrm{SU}(2)}^{K \pi}\right) \times\left|V_{u s}{ }^{2} \times\left|f_{+}^{K^{0} \pi^{-}}(0)\right|^{2}\right.
$$

Neutral K, B mixing

Standard Model

$\mathrm{SM}: \quad \Delta M_{q}=(\mathrm{known}) \times\left(\left|V_{t q}^{*} V_{t b}\right|^{2}\right) \times\left\langle\overline{B_{q}^{0}}\right| \mathcal{O}_{1}\left|B_{q}^{0}\right\rangle$ also:
$\frac{\Delta M_{s}}{\Delta M_{d}}=\frac{m_{B_{s}}}{m_{B d}} \times\left|\frac{V_{t s}}{V_{t d}}\right|^{2} \times \xi^{2} \quad$ with $\quad \xi \equiv \frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}}$
$\Delta \Gamma_{q}=\left[G_{1}\left\langle\bar{B}_{q}^{0}\right| \mathcal{O}_{1}\left|B_{q}^{0}\right\rangle+G_{3}\left\langle\bar{B}_{q}^{0}\right| \mathcal{O}_{3}\left|B_{q}^{0}\right\rangle\right] \cos \phi_{q}+O\left(1 / m_{b}\right)$
$\epsilon_{K}=($ known $) \times B_{K} \kappa_{\epsilon} \times\left|V_{c b}\right|^{2} \times \bar{\eta} \times f\left(\bar{\rho}, \bar{\eta}, V_{c b}, \eta_{i}\right)$

Simple LQCD quantities for CKM elements

$$
\begin{aligned}
& V_{u d} \\
& \pi \rightarrow \mu v \\
& V_{u s} \\
& V_{u b} \\
& \underset{K \rightarrow \mu v}{K \rightarrow \pi \ell v} \quad B \rightarrow \pi \ell v, B_{s} \rightarrow K \ell v \\
& \Lambda_{b} \rightarrow p \ell v \\
& V_{c d} \\
& D \rightarrow \pi \ell v \\
& D \rightarrow \ell v \\
& V_{c s} \\
& V_{c b} \\
& D \rightarrow K \ell v \\
& \boldsymbol{B}_{(s)} \rightarrow \boldsymbol{D}_{(s)}, \boldsymbol{D}^{*}{ }_{(s)} \boldsymbol{\ell} \boldsymbol{v} \\
& D_{s} \rightarrow \ell v \\
& V_{t d} \\
& B^{0}-\overline{B^{0}} \\
& B_{s}^{0}-\overline{B_{s}^{0}} \\
& V_{t b} \\
& (\rho, \eta) \boldsymbol{K}^{0}-\overline{\boldsymbol{K}^{0}}
\end{aligned}
$$

Simple quantities in LQCD

\approx low-lying hadron spectrum \rightarrow quark masses, a_{s}
weak decays - leptonic, semileptonic, mixing
\checkmark Kaons
D mesons
B mesons
\Rightarrow CKM, BSM phenomenology
is high precision \rightarrow including QED

Kaon summary

S. Aoki et al (FLAG-2 review, arXiv:1310.8555)

Beauty 2014, Edinburgh, 16 July 2014

Kaon summary

For all quantities there are results that use physical mass ensembles errors (in \%) comparison: FLAG-2 averages vs. new results

Kaon summary

For all quantities there are results that use physical mass ensembles

 errors (in \%) comparison: FLAG-2 averages vs. new results

Kaon summary

For all quantities there are results that use physical mass ensembles errors (in \%) comparison: FLAG-2 averages vs. new results

Simple quantities in LQCD

\approx low-lying hadron spectrum \rightarrow quark masses, a_{s}
¿ weak decays - leptonic, semileptonic, mixing
Kaons

- D mesons
B mesons
\rightarrow CKM, BSM phenomenology
is high precision \rightarrow including QED

LQCD Achievements: $f_{D s}$ time history

LQCD Achievements: Predictions

- Normalization agrees with experiment plus CKM unitarity
-Prediction of the shape
also: B_{c} mass prediction (HPQCD+FNAL PRL 2005, hep-lat/0411027)

D meson summary

S. Aoki et al (FLAG-2 review, arXiv:1310.8555)

D meson summary

errors (in \%) comparison: FLAG-2 averages vs. new results

review by C. Bouchard @ Lattice 2014

D meson summary

errors (in \%) comparison: FLAG-2 averages vs. new results

review by C. Bouchard @ Lattice 2014 see back up slides for more details

Neutral D-meson mixing

N. Carrasco
@ ICHEP 2014

First unquenched LQCD calculation by ETM in 2013 short-distance operators only

- ETMC: OS/MTM Mixed action

Simple quantities in LQCD

\approx low-lying hadron spectrum \rightarrow quark masses, a_{s}
¿ weak decays - leptonic, semileptonic, mixing
Kaons
D mesons
$\checkmark B$ mesons
\rightarrow CKM, BSM phenomenology
is high precision \rightarrow including QED

B meson summary

S. Aoki et al (FLAG-2 review, arXiv:1310.8555)

1.101 .151 .201 .25

B meson summary

errors (in \%) comparison: FLAG-2 averages vs. new results

review by C. Bouchard @ Lattice 2014

B meson summary

errors (in \%) comparison: FLAG-2 averages vs. new results

$\mathcal{F}^{B \rightarrow D^{*}}(1)$
$\mathcal{G}^{B \rightarrow D}(1)$
$R(D)$
$f_{+}^{B \rightarrow \pi}\left(q^{2}\right)$
ξ

review by C. Bouchard @ Lattice 2014
$f_{B_{s}}$

B meson summary

\square
review by C. Bouchard @ Lattice 2014

B meson summary

errors (in \%) comparison: FLAG-2 averages vs. new results

Form factors for $B \rightarrow D^{(*)} \ell \nu \& V_{c b}$

$$
\begin{aligned}
& \frac{d \Gamma\left(B \rightarrow D^{*} \ell \nu\right)}{d \omega}=(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(\omega^{2}-1\right)^{1 / 2}|\mathcal{F}(\omega)|^{2} \\
& \frac{d \Gamma(B \rightarrow D \ell \nu)}{d \omega}=(\text { known }) \times\left. V_{c b}\right|^{2} \times\left(\omega^{2}-1\right)^{3 / 2}|\mathcal{G}(\omega)|^{2}
\end{aligned}
$$

at zero recoil (HFAG 2011):

$$
\begin{gathered}
B \rightarrow D^{*} \ell \nu:\left|V_{c b}\right| \mathcal{F}(1)=(35.90 \pm 0.45) \times 10^{-3} \\
B \rightarrow D \ell \nu:\left|V_{c b}\right| \mathcal{G}(1)=(42.6 \pm 1.5) \times 10^{-3}
\end{gathered}
$$

\Rightarrow need form-factors at non-zero recoil for $V_{c b}$ determination from $B \rightarrow D \ell \nu$

Note: the experimental average doesn't include Coulomb correction ($\sim 1 \%$) for the neutral meson decay

Form factors for $B \rightarrow D^{(*)} \ell \nu \& V_{c b}$

FNAL/MILC:
small errors due to

- use of ratios
+ 2013:
$5 a$'s, 12 ensembles
- new results by Orsay group using ETM ratio method
- work in progress:

HPQCD (NRQCD-HISQ)
Bailey (OK action)

Also recent work on $B_{s} \rightarrow D_{s}{ }^{(*)}$ form factors

Form factors for $B_{(s)} \rightarrow D_{(s)} \ell \nu \& V_{c b}$

review by C. Bouchard @ Lattice 2014

$$
B_{(s)} \rightarrow D_{(s)} \ell \nu
$$

HPQCD
MILC $2+1$ asqtad gauge cfgs Heechang Na; $27^{\text {th }} @ 17: 30$; sess. 6
NRQCD b with HISQ light valence a: 0.09, 0.12 fm
Mpi: $260-500 \mathrm{MeV}$
calculating:

- shape of form factors for all $q^{\wedge} 2$
- ratio of branching fractions: $R(D), R(D s)$

B meson summary

errors (in \%) comparison: FLAG-2 averages vs. new results

see backup slides for more details

Semileptonic B-meson decay to light hadrons

Example: $B \rightarrow \pi \ell \nu$

\star shape for semileptonic B decays:
use z-expansion for model-independent parameterization of q^{2} dependence
\star calculate all form factors, $f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right)$ (and $f_{T}\left(q^{2}\right)$ for the corresponding rare decay)
\star LQCD predictions of $B_{s} \rightarrow K \ell \nu$ form factors exist (HPQCD) and more are in progress (FNAL/MILC, RBC/UKQCD)

Form factor for $B \rightarrow \pi \ell \nu \& V_{u b}$

S. Aoki et al (FLAG-2 review, arXiv:1310.8555)

Beauty 2014, Edinku.y.!, .し vuy cu••

Form factor for $B \rightarrow \pi \ell \nu \& V_{u b}$

review by C. Bouchard

@ Lattice 2014

$$
B \rightarrow \pi \ell \nu
$$

RBC-UKQCD

2+1 flavor DW + Iwasaki gauge fields
DW light and non-pert tuned RHQ b valence
a: 0.08, 0.11 fm
Taichi Kawanai; $27^{\text {th }} @ 16: 50$; sess. 6
Mpi: 289 - 422 MeV
combined chiral/continuum extrapolation with SU(2) Hard Pion ChPT
kinematic extrapolation via z-expansion

Form factor for $B \rightarrow \pi \ell \nu \& V_{u b}$

review by C. Bouchard @ Lattice 2014
 $$
B \rightarrow \pi \ell \nu
$$

HPQCD
MILC 2+1 asqtad sea with NRQCD b and HISQ light valence
a: 0.09, 0.12 fm
Mpi: $190-400 \mathrm{MeV}$

- adding statistics
- \quad exploring possibility of using Hard Pion ChPT + modified z-expansion to extend range of $q^{\wedge} 2$ and improve overlap with experiment
- $\quad p=2 p i / L(000,001,011,111,002,003,004)$
- would give q2 range: $\sim 6-26 \mathrm{GeV}^{\wedge} 2$

Form factor for $B \rightarrow \pi \ell \nu \& V_{u b}$

D. Du (FNAL/MILC) @ Lattice 2014

- blind analysis
- $N_{f}=2+1$ (Asqtad)
- 4 a's, 12 ensembles
- min. $m_{\pi} \sim 174 \mathrm{MeV}$
- Fermilab b quarks
- new functional method for z-expansion fit after chiral extrapolation.
- complete systematic error budget
\rightarrow error on $\left|V_{u b}\right| \sim 4.1 \%$

Form factors for $B_{s} \rightarrow K \ell \nu \& V_{u b}$

review by C. Bouchard @ Lattice 2014
 $$
B_{s} \rightarrow K \ell \nu
$$

HPQCD Bouchard et al. (HPQCD), 1406.2279
MILC $\mathrm{Nf}=2+1$ asqtad ensembles
NRQCD b with HISQ light/strange
Mpi: $260-500 \mathrm{MeV}$

First unquenched LQCD calculation by HPQCD in 2014

no exp. measurement yet

simultaneous chiral, continuum, and kinematic extrapolation via "HPChPT z-expansion"

measurement at large $q^{\wedge} 2$ with comparable error could distinguish between inclusive and exclusive Vub

Form factors for $B_{s} \rightarrow K \ell \nu \& V_{u b}$

review by C. Bouchard @ Lattice 2014
 $$
B_{s} \rightarrow K \ell \nu
$$

RBC-UKQCD
Taichi Kawanai; $27^{\text {th }} @ 16: 50$; sess. 6
2+1 flavor DW + Iwasaki gauge fields
DW light/strange and non-pert tuned RHQ b valence
a: $0.08,0.11 \mathrm{fm}$
Mpi: $289-422 \mathrm{MeV}$

B meson summary

errors (in \%) comparison: FLAG-2 averages vs. new results

Simple quantities in LQCD

\approx low-lying hadron spectrum \rightarrow quark masses, a_{s}
weak decays - leptonic, semileptonic, mixing

Kaons
D mesons
B mesons
\rightarrow CKM, BSM phenomenology

is high precision \rightarrow including QED

Implications for the $1^{\text {st }}$ row of the CKM Matrix

Constraining $\left|V_{u s}\right|$ using FNAL/MILC $13\left(K_{/ 3}\right)$ or FNAL/MILC $2014\left(K_{12}\right)$:

The uncertainty on $\left|V_{u s}\right|^{2}$ is the same/smaller compared to the uncertainty on $\left|V_{u d}\right|^{2}$

Time to revisit the uncertainty on $\left|V_{u d}\right|$?

Slight tension between $K_{l 2}$ and $K_{l 3}$ and for $K_{l 3}$ with unitarity prediction.

Implications for the $1^{\text {st }}$ row of the CKM Matrix

Implications for the $2^{\text {nd }}$ row of the CKM Matrix

review by C. Bouchard @ Lattice 2014

Implications for the $2^{\text {nd }}$ row of the CKM Matrix

review by C. Bouchard @ Lattice 2014

Slight tension between leptonic channel and CKM unitarity

- LQCD error commensurate with exp.
- a 0.5% error due to Coulomb, EM effects is included in the total error for $\left|V_{c b}\right|$

$\sim 3 \sigma$ tension between exclusive and inclusive determinations

UT analysis

Laiho, Lunghi \& Van de Water (Phys.Rev.D81:034503,2010), E. Lunghi, private comm.

The (red, yellow, green and blue) error bands are (still) dominated by theory errors, in particular by errors on hadronic matrix elements calculated in LQCD.

UT analysis

Laiho, Lunghi \& Van de Water (Phys.Rev.D81:034503,2010), E. Lunghi, private comm.

New bands for $\left|V_{u b} / V_{c b}\right|_{\text {excl }}$ and $\Delta m_{s} / \Delta m_{d}$ (yellow, green) assuming a 4% error on $\left|V_{u b}\right|_{\text {excl }}$ and a 2% error on ξ.

Exclusive $\left|V_{c b}\right|,\left|V_{u b}\right|$ only

BSM phenomenology

S. Hansmann-Menzemer @ EPS 2013

Combined LHCb + CMS Result

$$
\mathrm{BR}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)=3.6_{-1.4}^{+1.6} \times 10^{-10}
$$

SM prediction depends on $f_{B s}$ or $\hat{B}_{B_{s}}$

BSM phenomenology $B_{s} \rightarrow \mu^{+} \mu^{-}$

Standard Model prediction: Buras, et al (arXiv:1303.3820, JHEP 2013), Bobeth, et al (arXiv:1311.0903, PRL 2014)

uses $f_{B_{s}}$ from HPQCD 13

uses $\hat{B}_{B_{s}}$ from HPQCD 09

Form factors for $B \rightarrow K \ell^{+} \ell^{-}$

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i}\left(C_{i} O_{i}+C_{i}^{\prime} O_{i}^{\prime}\right)
$$

- SM GIM, loop, and Cabibbo suppressed
- $O_{i}^{(\prime)}$ are local operators
- $C_{i}^{(\ell)}$ are Wilson coefficients (model specific)
- hadronic matrix elements $\langle K| \mathcal{O}_{i}^{\left({ }^{\prime}\right)}|B\rangle$
- observed rate constrains $C_{i}^{(\prime)}$

$$
\left\{\begin{array}{l}
\text { e.g. } \\
O_{7}^{(\prime)}=\frac{e m_{b}}{16 \pi^{2}} \bar{s} \sigma_{\mu \nu} P_{R(L)} b F^{\mu \nu} \\
O_{9}^{(\prime)}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma_{\mu} P_{L(R)} b \bar{\ell} \gamma^{\mu} \ell \\
O_{10}^{(\prime)}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma_{\mu} P_{L(R)} b \bar{\ell} \gamma^{\mu} \gamma_{5} \ell
\end{array}\right.
$$

Form factors for $B \rightarrow K \ell^{+} \ell^{-}$

C. Bouchard (HPQCD, based on 1306.0434, 1306.2384)

Form factors for $B \rightarrow K \ell^{+} \ell^{-}$

R. Zhou (FNAL/MILC 2014, preliminary)

Form factors for $B \rightarrow K \ell^{+} \ell^{-}$

R. Zhou (FNAL/MILC 2014, preliminary)

Form factors for $B \rightarrow K \ell^{+} \ell^{-}$

R. Zhou (FNAL/MILC 2014, preliminary)

Include non-local operators in LQCD calculation?
not a simple quantity

BSM phenomenology

Lepton universality test: $B \rightarrow K \mu^{+} \mu^{-} / B \rightarrow K e^{+} e^{-}$

LHCb (arXiv:1406.6482):

$$
R_{K}=0.745\left({ }_{74}^{90}\right)(36)
$$

SM prediction using LQCD form factors calculated by HPQCD (C. Bouchard et al, arXiv:1303.0434, PRL 2013):
$R_{K}\left(1 \mathrm{GeV}^{2}, 6 \mathrm{GeV}^{2}\right)=1.00081(38)$
$q^{2}\left[\mathrm{GeV}^{2} / c^{4}\right]$

BSM phenomenology

Lepton universality test: $B \rightarrow K \mu^{+} \mu^{-} / B \rightarrow K e^{+} e^{-}$

LHCb (arXiv:1406.6482):

$$
R_{K}=0.745\binom{90}{74}(36)
$$

SM prediction using LQCD form factors calculated by HPQCD (C. Bouchard et al, arXiv:1303.0434, PRL 2013):
$R_{K}\left(1 \mathrm{GeV}^{2}, 6 \mathrm{GeV}^{2}\right)=1.00081(38)$
~2.6 σ tension between LHCb measurement and SM prediction

BSM phenomenology

```
review by C. Bouchard
@ Lattice 2014
\[
B \rightarrow K^{(*)} \ell \ell, \quad B_{s} \rightarrow \phi \ell \ell
\]
```

Horgan et al., PRL 112, 212003 (2014); PRD 89, 094501 (2014)
MILC 2+1 asqtad gauge fields
NRQCD b with asqtad light/strange valence
a: 0.09, 0.12 fm
Mpi: 313-519 MeV

caveat:
K^{*}, ϕ treated as stable (narrow width approximation)
unstable K^{*}, ϕ : beyond simple

Combined fit to $B \rightarrow K^{*} \mu \mu$ and $B_{s} \rightarrow \phi \mu \mu$ data.

BSM phenomenology

review by C. Bouchard

@ Lattice 2014

$$
\mathcal{R}\left(D^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \mu \nu\right)}
$$

BaBar, PRD 88, 072012 (2013)

$\mathcal{R}(D)_{\text {SM }}$ from lattice FNAL/MILC, PRL 109, 071802 (2012)
$\mathcal{R}\left(D^{*}\right)_{\text {SM }}$ needs lattice Fajfer et al., PRD 85, 094025 (2012)

Simple quantities in LQCD

\approx low-lying hadron spectrum \rightarrow quark masses, a_{s}
¿ weak decays - leptonic, semileptonic, mixing
Kaons
D mesons
B mesons
\Rightarrow CKM, BSM phenomenology
high precision \rightarrow including QED

Including QED

© current strategy: isospin symmetric u, d sea: $m_{u}=m_{d}$
© QCD + quenched QED (electro quenched): sea quarks neutral, valence quarks charged
© can use results from QCD + quenched QED in pure QCD calculations by adjusting the valence quark masses to include strong and EM isospin breaking effects, $m_{u} \neq m_{d}$

9 strong and EM isospin breaking are subdominant effects in the sea
Q to connect LQCD calculations of weak matrix elements to experiment, need to account for EM radiative corrections:
K, π decay: estimated phenomenologically using CHPT
(see for example, Cirigliano, et al, arXiv:1107.6001)
© We now need similar phenomenological estimates for weak D and B decays

Including QED

review by A. Portelli @ Lattice 2014 and ICHEP

Q new: full QCD+QED simulations used in spectrum calculations:
BMW $\left(n_{f}=1+1+1+1\right)$ at multiple lattice spacings, light quark masses QCDSF $\left(n_{f}=1+1+1\right)$
RBC/UKQCD $\left(n_{f}=2+1\right)$
PACS-CS $\left(n_{f}=1+1+1\right)$
similar plans by other groups (MILC, RBC/UKQCD, ...)

Including QED

review by A. Portelli @ Lattice 2014

see backup slides for more spectrum results

Including QED

review by A. Portelli @ Lattice 2014 and ICHEP
Q new: full QCD+QED simulations used in spectrum calculations:
BMW $\left(n_{f}=1+1+1+1\right)$ at multiple lattice spacings, light quark masses
QCDSF $\left(n_{f}=1+1+1\right)$
RBC/UKQCD $\left(n_{f}=2+1\right)$
PACS-CS $\left(n_{f}=1+1+1\right)$
similar plans by other groups (MILC, RBC/UKQCD, ...)
Q Will eventually need to calculate EM radiative corrections in full QCD+QED, for example:

$$
\Gamma\left(\pi^{+} \rightarrow \ell^{+} \nu_{\ell}(\gamma)\right)=\Gamma\left(\pi^{+} \rightarrow \ell^{+} \nu_{\ell}\right)+\Gamma\left(\pi^{+} \rightarrow \ell^{+} \nu_{\ell} \gamma\right)
$$

Proposal by RBC/UKQCD (see talk by C. Sachrajda @ Lattice 2014)

Beyond simple quantities

Note: When there are two (or more) hadrons in the initial or final state we need additional formalism to relate the quantites calculated in the Euclidean box to physical observables in Minkowski space.
see review talk by R. Briceño @ Lattice 2014

* $K \rightarrow \pi \pi$ amplitudes and Δm_{K}
resonances, ...

$K \rightarrow \pi \pi$

review by N. Garron @ Lattice 2014

Describe $K \rightarrow(\pi \pi)_{\mathrm{I}=0,2}$ with an effective Hamiltonian

$$
H^{\Delta s=1}=\frac{G_{F}}{\sqrt{2}}\left\{\sum_{i=1}^{10}\left(V_{u d} V_{u s}^{*} z_{i}(\mu)-V_{t d} V_{t s}^{*} y_{i}(\mu)\right) Q_{i}(\mu)\right\}
$$

Short distance effects factorized in the Wilson coefficients y_{i}, z_{i}
Long distance effects factorized in the matrix elements

$$
\langle\pi \pi| Q_{i}|K\rangle \longrightarrow \text { Lattice }
$$

$K \rightarrow \pi \pi$

review by N. Garron @ Lattice 2014

$$
\Delta I=1 / 2
$$

RBC/UKQCD (arXiv:1106.2714, PRD 2011):

- Pilot study on small volume, unphysical pion mass, but complete with all operators, disconnected diagrams and NPR.
- Computation with physical kinematics is in progress
- Emerging understanding of the $\Delta I=1 / 2$ rule:
$I=2$ amplitude is suppressed due to cancellation between two dominant contributions, while the $I=0$ amplitude is not.
several other efforts:
- Ishizuki et al (Lattice 2014), improved Wilson fermions, enhancement is observed
- Endress, Pena, role of the charm quark in $\Delta I=1 / 2$ rule

$K \rightarrow \pi \pi$

review by N. Garron @ Lattice 2014

$$
\Delta I=3 / 2
$$

RBC/UKQCD (Lattice 2014):
calculation with physical mass pions, large volumes, two lattice spacings first result with continuum extrapolation, complete error budget coming soon!

systematic error analysis is in progress

The goal of this effort is to eventually calculate ϵ^{\prime} to $\sim 15 \%$ accuracy

plenary talk by C. Sachrajda @ Lattice 2014

Finite volume dependence more complicated than for $K \rightarrow \pi \pi$
(N. Christ et al, arXiv:1401.1362)

RBC/UKQCD (arXiv:1406.0916):
complete calculation with unphysical parameters, $m_{K}<2 m_{\pi}$

$$
\Delta m_{K}=3.19(41)(96) \times 10^{-12} \mathrm{MeV}
$$

Z. Bai (RBC/UKQCD, Lattice 2014):
preliminary results at near physical mass with $m_{K}>2 m_{\pi}$ stat. errors only

> Work has also started on rare K decays, such as $K_{L} \rightarrow \pi^{0} \ell^{+} \ell^{-}$ \quad (RBC/UKQCD, ETM)

Beyond simple quantities

Resonances

Returning to the calculation of the $B \rightarrow K^{*} \ell \ell$ and the $B_{s} \rightarrow \phi \ell \ell$ form factors (R. Horgan et. al, arXiv:1310.3722, arXiv:1310.3887, PRDs 2014), a first calculation of the K^{*} width was reported by Prelovsek et al (arXiv: 1307.0736, PRD 2013).

The formalism for treating vector mesons as resonances in weak decay transitions was only very recently (!) developed (see review talk by R. Briceño, and arXiv:1406.5965)

No numerical LQCD calculation of a weak transition amplitude to a final state resonance has been done yet.

There are now a number of calculations of the ρ width, excited charmed meson widths, ... (see the review talks by S. Prelovsek, T. Yamazaki, R. Briceño @ Lattice 2014).

Summary

Q simple quantities:
kaons: < 0.5\% for $\operatorname{SU}(3)$ breaking ratios
~ 1\% for other quantities
D, D_{s}-mesons: $\mathbf{< 0 . 5 \%}$ for $\operatorname{SU}(3)$ breaking ratio $f_{D s} / f_{D}$
$<\mathbf{1 \%}$ for decay constants
$\mathbf{~ 3 - 5 \%}$ for other quantities
B, B_{s}-mesons: $\mathbf{< 1 \%}$ for $\mathrm{SU}(3)$ breaking ratio $f_{B S} / f_{B}$
$\mathbf{\sim 2 \%}$ for decay constants, $B \rightarrow D^{*}$
$\mathbf{~ 3 - 8 \%}$ for other quantities $\rightarrow \mathbf{5 \%}$
© precision will continue to improve with better simulations (especially for D, B mesons)
© for B : leverage high precision D results with B / D ratios
Q not-simple: 10-30\% with complete error budget

Conclusions and Outlook

Q LQCD (Lattice Field Theory, more generally) is an idea driven area of research
© progress made (especially recently) would not be possible without innovative ideas (and a lot of courage)
© we will see an increasing number of very precise results for an increasing number of simple quantities

Q at the same time we will see reliable results for an increasing number of new (not simple) quantities

Q sufficient computational resources are absolutely essential
Q ambitious program is in place to provide (much needed) theoretical support for all three frontiers (the same can be said for Nuclear physics)

Thank you!

And thanks to all the people who helped me to prepare this talk:
C. Alexandrou, T. Blum, R. Briceno, C. Bouchard, M. Constantinou, C. Davies, D. Du, N. Garron, T. Izubuchi, A. Kronfeld, E. Lunghi, A. Portelli, S. Prelovsek, F. Sanfilippo, R. Van de Water, T. Yamazaki, ...

Omitted Topics

@ QFT at finite temperature (review by A. Bazavov @ Lattice 2014)
© lattice calculations of BSM theories (review by Y. Aoki @ Lattice 2014)
© QCD at finite density (review by D. Sexty @ Lattice 2014)
Q hadron spectrum studies of exotica, states near threshold, hadron structure calculations, ...
(review talks by S. Prelovsek, T. Yamazaki, M. Constantinou, R. Briceño @ Lattice 2014)
©

Lattice 2014 in NYC, June 23-28 2014

Backup slides

systematic error analysis

discretization effects

discrete space-time \rightarrow discrete QCD action
Symanzik EFT: $\langle\mathcal{O}\rangle^{\text {lat }}=\langle\mathcal{O}\rangle^{\text {cont }}+O(a p)^{n}$
p is the typical momentum scale associated with $\langle\mathcal{O}\rangle$ for light quark systems, $p \sim \Lambda_{\text {QCD }}$

$a(\mathrm{fm})$
The form of $O(a p)^{n}$ depends on the details of the lattice action.
All modern light-quark actions start at $n=2$
(improved Wilson, twisted-mass Wilson, asqtad, HISQ, Domain Wall, Overlap, ...).

systematic error analysis

discretization effects for b quarks

- If we use light quark actions for heavy quarks, discretization errors $\sim O\left(a m_{h}\right)^{2}$,

$a(\mathrm{fm})$
with currently available lattice spacings for charm $\boldsymbol{a m}_{\boldsymbol{c}} \sim \mathbf{0 . 1 5 - 0 . 6} \quad$ and for $b: \quad \boldsymbol{a} \boldsymbol{m}_{\boldsymbol{b}}>\mathbf{1}$

\Rightarrowneed effective field theory methods for b quarks for charm lattice spacings are sufficiently small so that we can use improved light quark methods

- avoid errors of $\left(a m_{b}\right)^{2}$ by using EFT in the formulation/matching of lattice action/currents:
+ relativistic HQ actions (Fermilab, Columbia, Tsukuba)
+ HQET
- NRQCD
or
- use the same improved light quark action as for charm (HISQ, twisted mass Wilson, NP imp.

Wilson, Overlap, ...)

- keep $\operatorname{am}_{h}<1$
\rightarrow use HQET and/or static limit to extrapolate/interpolate to the physical b quark mass

systematic error analysis

light quark mass effects

Simulations with $m_{\text {light }}=1 / 2\left(m_{u}+m_{d}\right)$ at the physical u/d quark masses are now available, but many results still have

$$
m_{\text {light }}>1 / 2\left(m_{u}+m_{d}\right)_{\text {phys }}
$$

χ PT can be used to extrapolate/interpolate to the physical point.
© Can include discretization effects (for example, staggered χ PT)
@ It is now common practice to perform a combined continuum-chiral extrapolation/interpolation

systematic error analysis

finite volume effects

One hadron (meson) in initial/final state:
If L is large enough, FV error $\sim e^{-m_{\pi} L}$
© keep $m_{\pi} L \gtrsim 4$
To quantify residual error:
© include FV effects in CPT
Q compare results at several $L s$ (with other parameters fixed)
The story changes completely with two or more hadrons in initial/final state! (more later)
review of few-body systems by R. Briceño @ Lattice 2014

systematic error analysis

other effects

\checkmark statistical errors: from monte carlo integration consider/include systematic errors from correlator fit procedure
$\checkmark n_{f}$ dependence: realistic sea quark effects: use $n_{f}=2+1$ or $n_{f}=2+1+1$ Note: $n_{f}=2$ (quenched strange quark effects appear to be small)

* renormalization (and matching):
\Rightarrow with lattice perturbation theory: need to include PT errors
\Rightarrow nonperturbative methods
\Rightarrow use nonrenormalized operators where possible

Simple quantities in LQCD

Focus on results with complete error budgets and reliable systematic error estimates.
> ~ low-lying hadron spectrum \rightarrow quark masses, α_{s} weak decays (leptonic, semileptonic, mixing) \rightarrow CKM, BSM phenomenology is high precision \rightarrow including QED

Low-lying hadron spectrum

new results for the charmed baryon spectrum:

C. Alexandrou (ETM collaboration, arXiv:1406.4310)

Low-lying hadron spectrum

new results for the charmed baryon spectrum:

quark masses and α_{s}

Q with experimental inputs (m_{π}, m_{K}, etc..) we obtain the bare lattice masses and lattice spacing in physical units.

Q need additional work to determine renormalized quark masses and α_{s} :
for α_{s} :
calculate additional short distance quantities (Wilson loops, step-scaling functions, short distance potential, QCD vertices, current-current correlators, ...)
for quark masses and α_{s} :
$>$ define a renormalization scheme nonperturbative schemes: RI-MOM, Schrödinger functional, ...
$>$ match to $\overline{M S}$ scheme

quark masses and α_{s} summary

S. Aoki et al (FLAG-2 review, arXiv:1310.8555)

$\mathrm{m}_{\mathrm{s}} / \mathrm{m}_{\mathrm{ud}}$

quark masses and α_{s} summary

review by F. Sanfilippo @ Lattice 2014

PDG 2014

quark masses and α_{s} summary

- mass ratios can be determined very accurately

- FLAG plans to add the heavy quark masses to their averages in coming year.
- uncertainty in the SM prediction of Higgs partial widths is dominated by parametric uncertainties due to m_{b}, m_{c}, and α_{s}.
\Rightarrow need masses, strong coupling with $\sim 0.1-0.4 \%$ precision for testing SM Wigs couplings.
- Lepage, Mackenzie, Peskin (arXiv:1401.0319)
using the HPQCD 10 determinations of m_{b} and m_{c} and the PDG average for α_{s} :

$$
\delta_{b}=0.77 \quad \delta_{c}=0.89 \quad \delta_{g}=0.78
$$

cf. ILC goals: $\quad \delta_{b}=0.3 \quad \delta_{c}=0.7 \quad \delta_{g}=0.6$
Note: $\quad \delta_{b}=\frac{1}{2} \delta \Gamma(h \rightarrow b \bar{b})$

- improving the precision of lattice quark mass and α_{s} determinations is straightforward

Kaon summary

For all quantities there are results that use physical mass ensembles

Kaon summary

For all quantities there are results that use physical mass ensembles

Kaon summary

For all quantities there are results that use physical mass ensembles

FNAL/MILC (arXiv:1312.1228, PRL 2014, T. Primer @ Lattice 2014)

TABLE III. Error budget for $f_{+}(0)$ in percent.

Source of uncertainty	Error $f_{+}(0)(\%)$
Stat. + disc. + chiral inter.	0.24
$m_{s}^{\text {val }} \neq m_{s}^{\text {sea }}$	0.03
Scale r_{1}	0.08
Finite volume	0.2
Isospin	0.016
Total Error	0.33

D meson summary

Neutral D-meson mixing

review by C. Bouchard @ Lattice 2014

Short Distance D^{0} Mixing ($c \rightarrow u$ FCNCs $)$

Now: UTfit, 1402.1664

LHCb, PRL 111, 251801 (2013)
$\left|M_{12}\right|=(4.4 \pm 2.0) \times 10^{-3} \mathrm{ps}^{-1}$

$$
\left|\Gamma_{12}\right|=(14.9 \pm 1.6) \times 10^{-3} \mathrm{ps}^{-1}
$$

$$
\arg \left(\frac{\Gamma_{12}}{M_{12}}\right)=(2.0 \pm 2.7)^{\mathrm{o}}
$$

2020: Briere, ANL Intensity Frontier (2013)
$\sim 5 \times$ current precision

Neutral D-meson mixing

B meson summary

errors (in \%) comparison: FLAG-2 averages vs. new results

First results for $f_{B} * / f_{B}$ by ETM/Orsay group, see A. Oyanguren talk (ICHEP, Flavor physics session, Saturday)

Form factors for $B \rightarrow D^{(*)} \ell \nu \& V_{c b}$

review by C. Bouchard

 @ Lattice 2014$$
B \rightarrow D^{(*)} \ell \nu
$$

FNAL/MILC Bailey et al. (FNAL/MILC), 1403.0635

MILC Nf=2+1 asqtad
FNAL b and c with asqtad light valence
a: $0.045-0.15 \mathrm{fm}$
Mpi: $174-520 \mathrm{MeV}$
work at zero recoil, calc $\mathrm{F}(1)$
leading source of error is hvy q disc effects
small errors due to ratios (error cancellation), many ensembles, small lattice spacings

[^0]
Form factors for $B \rightarrow D^{(*)} \ell \nu \& V_{c b}$

review by C. Bouchard @ Lattice 2014

$$
B \rightarrow D^{(*)} \ell \nu
$$

Jang, Oktay, Bailey, DeTar, Kronfeld, Lee

Attacking hvy quark errors with Oktay-Kronfeld action

- improved version of FNAL action
- includes additional $O\left(a^{\wedge} 2, a^{\wedge} 3\right)$ improvement terms
verified improvement in B meson spectrum
- dispersion relation
- hyperfine splitting

Yong-Chull Jang; $24^{\text {th }} @ 17: 50$; sess. 2

Improved calculation planned for B->D* at zero recoil

- $\quad \mathrm{Nf}=2+1+1$ HISQ gauge ensembles
- physical It quark mass

```
Jon Bailey; 27 th @ 17:50; sess. 6
```

- HISQ light/charm and OK b valence quarks
- Heavy-Light current, on-shell improvement through O(p^3)

B meson summary

review by C. Bouchard @ Lattice 2014

FNAL/MILC
MILC 2+1 asqtad ensembles
FNAL b, asqtad light/strange valence
a: $0.045-0.12 \mathrm{fm}$
Mpi: $174-520 \mathrm{MeV}$

$$
10^{8} \mathcal{B}(B \rightarrow \pi \mu \mu)=2.3(6)_{\text {stat }}(1)_{\text {sys }} \quad \text { LHCb, JHEP } 12 \text { (2012) } 125
$$

$$
B \rightarrow \pi \ell \ell
$$

HPQCD
MILC 2+1 asqtad ensembles NRQCD b, HISQ light/strange valence a: $0.09,0.12 \mathrm{fm}$
Mpi: $174-520 \mathrm{MeV}$

Neutral B-meson mixing

Standard Model

In general :
$\mathcal{H}_{\text {eff }}=\sum_{i=1}^{5} c_{i}(\mu) \mathcal{O}_{i}(\mu)$
SM:

$$
\begin{aligned}
& \mathcal{O}_{1}=\left(\bar{b}^{\alpha} \gamma_{\mu} L q^{\alpha}\right)\left(\bar{b}^{\beta} \gamma_{\mu} L q^{\beta}\right) \\
& \mathcal{O}_{2}=\left(\bar{b}^{\alpha} L q^{\alpha}\right)\left(\bar{b}^{\beta} L q^{\beta}\right) \\
& \mathcal{O}_{3}=\left(\bar{b}^{\alpha} L q^{\beta}\right)\left(\bar{b}^{\beta} L q^{\alpha}\right)
\end{aligned}
$$

$$
\left\langle\mathcal{O}_{i}\right\rangle \equiv\left\langle\overline{B_{q}^{0}}\right| \mathcal{O}_{i}\left|B_{q}^{0}\right\rangle(\mu)=e_{i} m_{B_{q}}^{2} f_{B_{q}}^{2} B_{B_{q}}^{(i)}(\mu)
$$

We calculate all five matrix elements.

Neutral B-meson mixing

```
review by C. Bouchard
@ Lattice 2014
    SM and BSM }\mp@subsup{B}{(s)}{0}\mathrm{ Mixing
    HPQCD
MILC 2+1+1 HISQ cfgs
radiatively-improved NRQCD b with HISQ light/strange
```

\qquad

```
a: \(0.09,0.12,0.15 \mathrm{fm}\)
physical light masses (a first for B-mixing)
- extension of B-physics program on these ensembles (spectra, decay constants, etc.)
- still generating data
- impressive early results
```


Neutral B-meson mixing

review by C. Bouchard

@ Lattice 2014
SM and BSM $B_{(s)}^{0}$ Mixing
Ishikawa, Aoki, Izubuchi, Lehner, and Soni (to appear on arXiv tonight) (arXiv:1406.6192)

Idea

- anchor a HQ expansion with results in static limit
- relativistic heavy quark action for $\mathrm{mQ} \sim \mathrm{mc}$
- iterate between mc and anchor point ala ETM ratio method

Simulation

- Nf=2+1 DW, Iwasaki gauge
- static b with DW light valence
- a ~ 0.09, 0.11 fm
- Mpi: $289-418 \mathrm{MeV}$
- 1-loop matching (ok in static limit) including $O(a)$ effects

$$
\begin{aligned}
f_{B} \sqrt{\hat{B}_{B}} & =240(15)_{\mathrm{stat}}(17)_{\mathrm{sys}} \mathrm{MeV} \\
f_{B_{s}} \sqrt{\hat{B}_{B_{s}}} & =290(9)_{\mathrm{stat}}(20)_{\mathrm{sys}} \mathrm{MeV} \\
\xi & =1.208(41)_{\mathrm{stat}}(44)_{\mathrm{sys}} \\
\hat{B}_{B} & =1.17(11)_{\mathrm{stat}}(19)_{\mathrm{sys}} \\
\hat{B}_{B_{s}} & =1.22(6)_{\mathrm{stat}}(12)_{\mathrm{sys}} \\
B_{B_{s}} / B_{B} & =1.028(60)_{\mathrm{stat}}(43)_{\mathrm{sys}} \mathrm{MeV} \\
& * \text { No } \mathcal{O}\left(1 / m_{b}\right) \text { error included }
\end{aligned}
$$

Tomomi Ishikawa; $25^{\text {th }}$ @ 9:20; sess. 6

Neutral B-meson mixing

FNAL/MILC @ Lattice 2014

review by C. Bouchard @ Lattice 2014

- 14 MILC asqtad ensembles 4 lattice spacings
~ 4 sea quark masses per lattice spacing
~600-2000 configurations
$\times 4$ time-sources per ensemble
- asqtad light valence quarks
~ 7 light valence masses per ensemble
- Fermilab b quarks
- $O(a)$ improved four-quark operators

no results quoted yet
expected errors:
- $\langle\bar{B}| \mathcal{O}_{1}|B\rangle: \sim 9 \%$
- $\langle\bar{B}| \mathcal{O}_{2,3,4,5}|B\rangle: 10-15 \%$
- $\xi:<2 \%$
- $\langle\bar{B}| \mathcal{O}_{3}|B\rangle /\langle\bar{B}| \mathcal{O}_{1}|B\rangle: \sim 10 \%$

Including QED

review by A. Portelli @ Lattice 2014 and ICHEP (in Lattice session, Saturday)

Including QED

review by A. Portelli @ Lattice 2014 and ICHEP (in Lattice session, Saturday)


```
- [Gasser \& Leutwyler, 1982]
[Walker-Loud et al., 2012]
\(\square\) [NPLQCD, 2007]
[QCDSF, 2012]
[RM123, 2013]
[Shanahan et al., 2012]
\(\square \square\) no beta-decay
- experiment
Hen [RBC-UKQCD, 2010]
--1 [BMWc, 2013] (EQ)
\(\mapsto\) [BMWc, 2014]
\(\mapsto\) [QCDSF, 2014]
```


Few body systems in a box

review by R. Briceño

@ Lattice 2014 A roadmap towards physics

2 Plug into formalism
(3) Out goes elastic \& inelastic QCD scattering amplitudes

à la mode de Lellouch \& Lüscher (2000)
5 Plug spectrum, scattering parameters and finite volume form factor into formalism
6) Out go physical form factors

Few body systems in a box

review by R. Briceño

@ Lattice ${ }^{2014}$ Spectrum 2-body system in a box

Few body systems in a box

review by R. Briceño

@ Lattice 2014

Beyond simple quantities

$\approx K \rightarrow \pi \pi$ amplitudes and Δm_{K}
hadronic corrections to muon $g-2$
it hadron structure, resonances, ...

hadronic contributions to muon $g-2$

review by B. Casey @ Lattice 2014

The experimental measurement (BNL-E821) of the muon g-2 disagrees with the SM prediction by $>3 \sigma$.

muon $g-2$ is a sensitive probe of new physics.
The goal of the Fermilab muon $g-2$
experiment is to reduce the experimental uncertainty by a factor of 4 .

The uncertainty of the SM prediction is dominated by the error on the hadronic corrections (HVP and HLbL):

$$
\delta\left(a_{\mu}^{\mathrm{HVP}}\right)=0.6 \% \quad \delta\left(a_{\mu}^{\mathrm{HLbL}}\right)=25 \%
$$

hadronic contributions to muon $g-2$

g-2

- Both quantities are calculable, in principle, with LQCD methods.
- For HVP there are already methods in place, with a lot of activity in the last 6 months, and first results have been reported.
- The calculation of the HLbL correction is very difficult, but methods for it are also being developed and tested.

hadronic contributions to muon $g-2$

Status of HVP calculations

A lot of progress in method development:

- statistical noise reduction techniques (AMA, ...)
- methods for controlling q^{2} extrapolation (twisted boundary conditions, Pade approximants, mixed time time- and spacelike calculations, position-space moments, ...)
- use of physical mass ensembles (BMW, RBC/UKQCD, ETM)
- disconnected contributions (Mainz group)

See talks by G. Herdoiza, J. Koponnen, P. Santiago @ ICHEP (Lattice session, Saturday)

compiled by T. Blum + T. Izubuchi

hadronic contributions to muon g-2

$g-2 m$

Status of Hadronic light-by-light (HLbL)

T. Blum, T. Izubuchi, M. Hayawaka (paper in preparation)
pilot study of direct method needs systematic error analysis

T. Blum, T. Izubuchi, priv. comm.

- alternate approach: calculate dominant contribution (pion transition form factor)

see talk by E. Shintani @ ICHEP (Lattice session, Saturday)

Hadron structure

review by M. Constantinou @ Lattice 2014

Nucleon axial charge g_{A}

Finite volume effects are an important source of systematic error

Hadronic interactions

review by T. Yamazaki @ Lattice 2014
$I=2 \pi \pi$ Simplest scattering system
Comparison of dynamical calculations at physical m_{π}

Scattering length a_{0}^{I}

$$
a_{0}=\lim _{p \rightarrow 0} \frac{\tan \delta(p)}{p}
$$

$I=2 \pi \pi a_{0}^{2}$ and $I=1 / 2 K \pi a_{0}^{1 / 2}$

Most (but not all) results displayed include systematic error budgets
most are consistent with each other

Resonances

review by S. Prelovsek @ Lattice 2014

Evidence for \mathbf{Z}_{c}^{+}from lattice: $1^{G}=1^{+}, P^{P C}=1^{+-}$

- Black circles: two-meson states
- Red asterix: candidate for $\mathrm{Z}_{\mathrm{c}}{ }^{+}$ (the smaller error is statistical, the larger corresponds to systematics)
- 9 two meson states below 4.3 GeV
- an additional state found
- since we exhausted all two mesonstates below 4.3 GeV , it is a candidate for an exotic $Z_{c}{ }^{+}$.

[^0]: * Lattice error now equal to experimental error.

