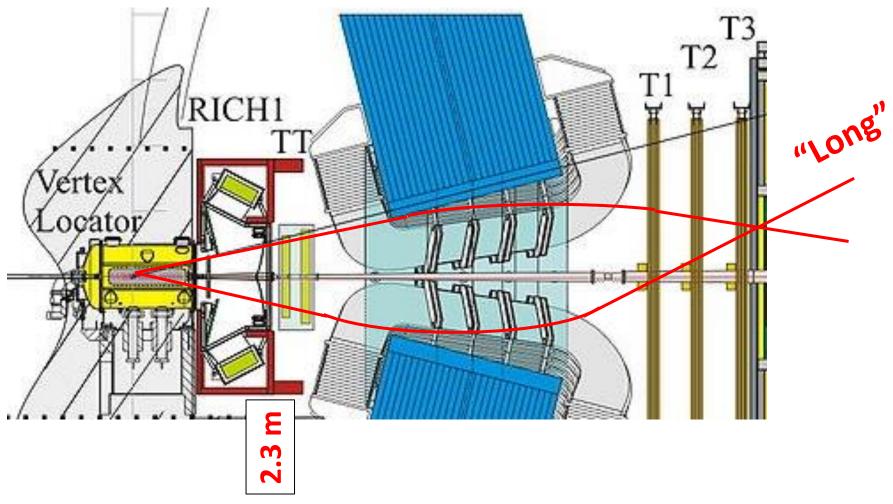

Beauty baryons @ LHCb

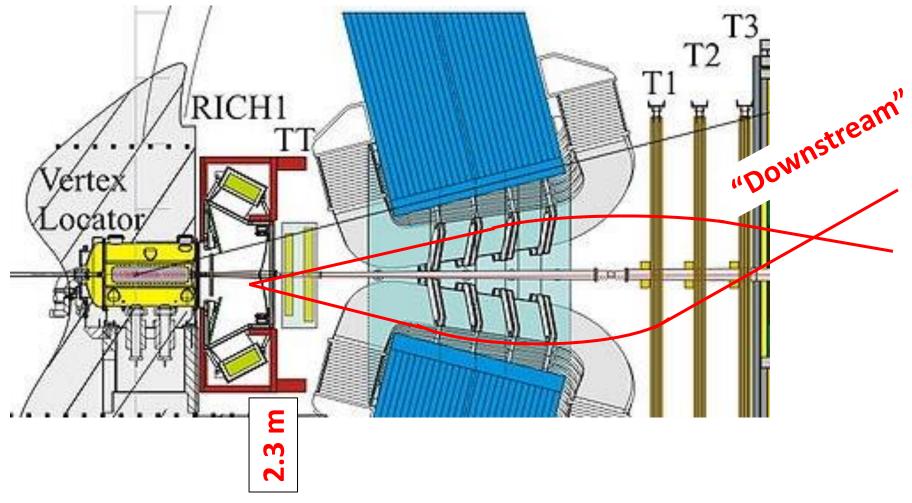
- Beauty baryons are produced copiously in LHCb, opening up new avenues for study and improved precision of their properties and decays.
 - Production
 - Mass
 - **Lifetime**
 - New decay modes
 - CP asymmetries
 - **4** Other studies, for a future BEAUTY meeting...
 - \blacksquare Rare decays, e.g. $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$
 - **♣** 1 fb⁻¹ result (PLB 725, 2013) being updated to 3 fb⁻¹.
 - \blacksquare Probe CKM elements V_{cb} , V_{ub} in $\Lambda_b \rightarrow \Lambda_c \ell \nu$ and $\Lambda_b \rightarrow \rho \ell \nu$ decays
 - Excited b-baryon states
 - ♣ bc-baryons

Detector & data sets

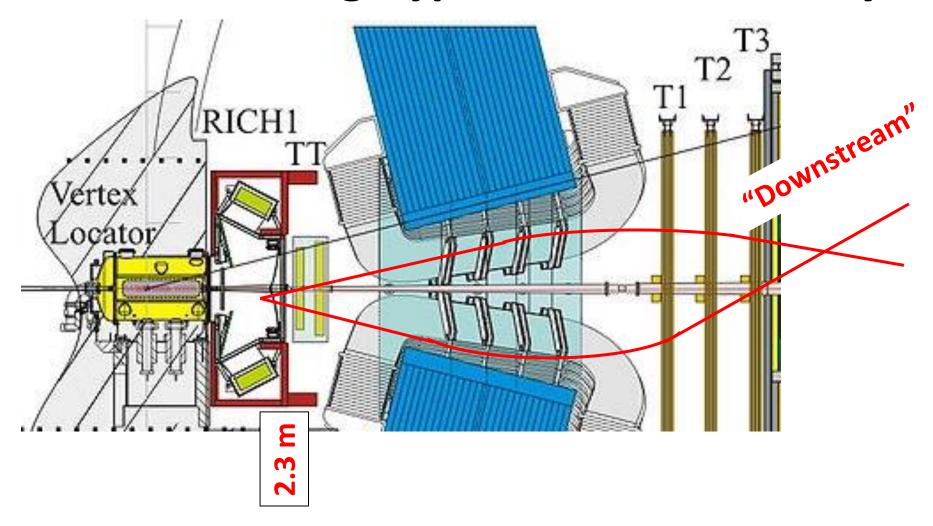


- □ Precision vertex detector (σ_{ip}^{\sim} 20 um), tracking $\sigma_{p}/p \approx 0.5\%$
- ☐ Excellent particle identification, including hadron separation to ~100 GeV
- \Box High bandwidth trigger, ~2-5 kHz to tape, hadronic, EM and muonic final states.
 - ☐ Wide & flexible physics scope: b, c, quarkonia, W, Z's, exotics, jets, etc.
- ☐ Analyses based on:
 - □ 2011, 1 fb⁻¹ @ 7 TeV
 - □ 2012, 2 fb⁻¹ @ 8 TeV

Menu for this talk


1		F	1)
	$+$ B($\Lambda_b \rightarrow \Lambda_c \pi$)	arXiv:1405.6842	
	$+$ $\Xi_{ m b}^-$ and $\Omega_{ m b}^-$ lifetimes	arXiv:1405.1543	
	4 Ξ _b ⁰ mass, lifetime & production properties	arXiv:1405.7223	
	$+ \Lambda_b/\Xi_b^0 \rightarrow D^0 ph^{\pm} decays$	arXiv:1311.4823	
	$+\Lambda_{ m b}$ \to J/ψ pK $^{ ext{-}}$ and $\Lambda_{ m b}$ \to J/ψ p $\pi^{ ext{-}}$	arXiv:1406.0755	
	4 Search for Λ_b/Ξ_b^0 → K _S ph [±]	arXiv:1402.0770	
	$+$ First observation of $\Lambda_b \rightarrow \Lambda_c^+ D_{(s)}^-$	arXiv:1403.3606	
	D) Commence of the commence of		TI

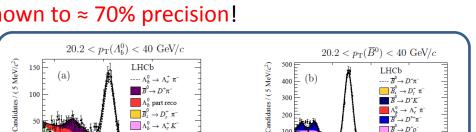
Reconstructing hyperons from b decay


□ Average b-momentum in LHCb ~ 100 GeV □ E.g. $\Lambda_h \rightarrow J/\psi \Lambda$, 30 GeV $\Lambda \rightarrow \gamma \approx 30 \rightarrow \langle d \rangle \approx 2.5$ m

Reconstructing hyperons from b decay

- ☐ Average b-momentum in LHCb ~ 100 GeV
 - \square E.g. $\Lambda_h \rightarrow J/\psi \Lambda$, 30 GeV $\Lambda \rightarrow \gamma \approx 30 \rightarrow \langle d \rangle \approx 2.5 \text{ m}$
- ☐ Hyperons reconstructed if they decay **upstream of TT**.

Reconstructing hyperons from b decay

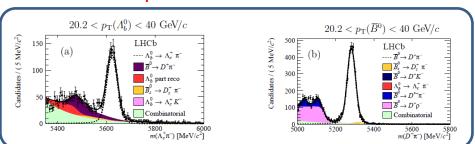


- lacksquare Going beyond $\Lambda_{\rm b}$..
 - \square Example: $\Xi_b^- \rightarrow J/\psi \Xi^-, \Xi^- \rightarrow \Lambda \pi^-$
- \square Get hit 2X $\tau(\Xi^{-})^{\sim}164$ ps, $\tau(\Lambda)^{\sim}260$ ps

Production, BFs Mass and Lifetimes

$$\Lambda_b \rightarrow \Lambda_c \pi BF$$

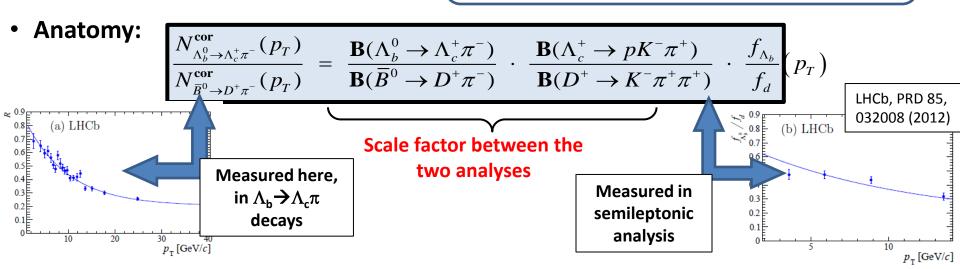
- State of affairs, pre-2014: $B(\Lambda_b^0 \to \Lambda_c^+ \pi^-) = 5.7^{+4.0}_{-2.6} \times 10^{-3}$
 - "Golden mode" for Λ_b decays only known to \approx 70% precision!
- Use **45,000** fully reco'd $\Lambda_b \rightarrow \Lambda_c \pi^+$ and **106,000** B⁰ \rightarrow D⁻ π^+ decays.


 $m(\Lambda_c^+\pi^-)$ [MeV/ c^2]

LHCb-PAPER-2014-004 arXiv:1405.6842 submitted to JHEP 1 fb⁻¹

> 5600 m(D⁺π⁻) [MeV/α

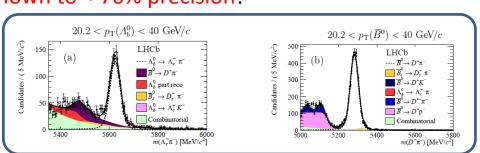
$\Lambda_b \rightarrow \Lambda_c \pi BF$

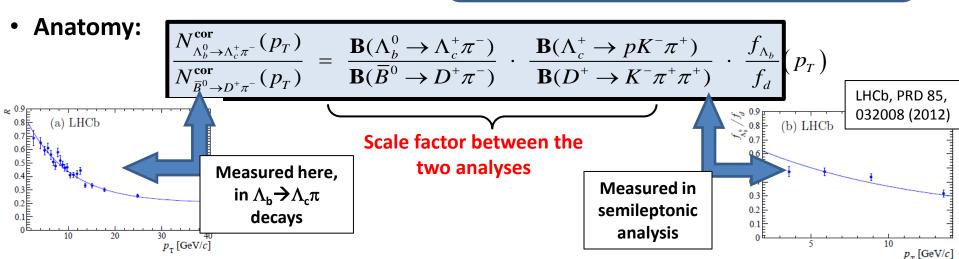

- State of affairs, pre-2014: $B(\Lambda_b^0 \to \Lambda_c^+ \pi^-) = 5.7^{+4.0}_{-2.6} \times 10^{-3}$
 - "Golden mode" for $Λ_b$ decays only known to ≈ 70% precision!
- Use **45,000** fully reco'd $\Lambda_b \rightarrow \Lambda_c \pi^+$ and **106,000** B⁰ \rightarrow D⁻ π^+ decays.

LHCb-PAPER-2014-004

arXiv:1405.6842 submitted to JHEP

1 fb⁻¹



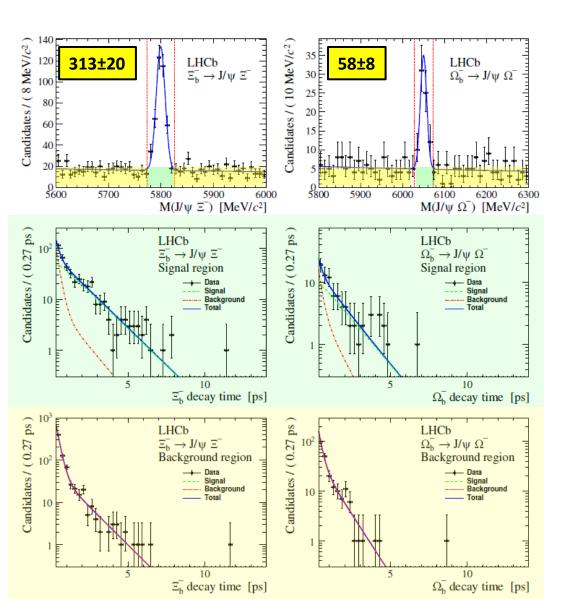

$\Lambda_h \rightarrow \Lambda_c \pi BF$

LHCb-PAPER-2014-004 arXiv:1405.6842 submitted to JHEP 1 fb⁻¹

- State of affairs, pre-2014: $B(\Lambda_b^0 \to \Lambda_c^+ \pi^-) = 5.7^{+4.0}_{-2.6} \times 10^{-3}$

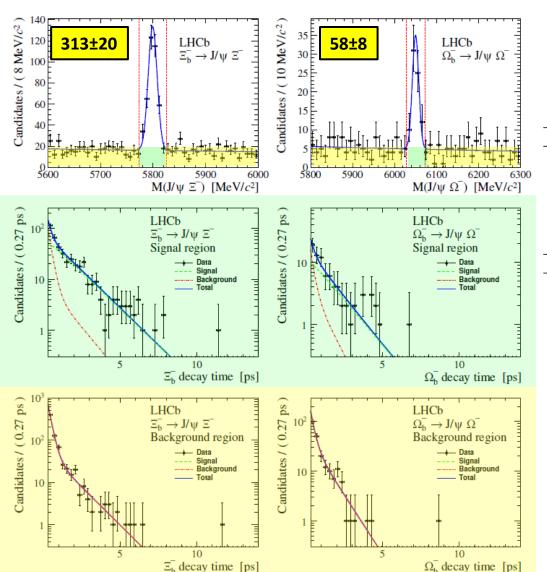
 - "Golden mode" for Λ_h decays only known to \approx 70% precision!
- Use **45,000** fully reco'd $\Lambda_h \rightarrow \Lambda_c \pi^+$ and **106,000** B⁰ \rightarrow D⁻ π ⁺ decays.

 $B(\Lambda_c \rightarrow pK\pi)$ common to both analyses \rightarrow cancelation of large syst. error


$$\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-) = \left(4.30 \pm 0.03 \stackrel{+0.12}{_{-0.11}} \pm 0.26 \pm 0.21\right) \times 10^{-3}$$

BF measured to 8% precision! Huge leap forward in precision!

submitted to PLB


3 fb⁻¹

• Reconstruct $\Xi_b^- \rightarrow J/\psi \Xi^-$, $\Xi^- \rightarrow \Lambda \pi^-$ and $\Omega_b^- \rightarrow J/\psi \Omega^-$, $\Omega^- \rightarrow \Lambda K^-$, with $\Lambda \rightarrow p\pi^-$.

$\Xi_{\rm b}^-$ and $\Omega_{\rm b}^-$ lifetimes

Reconstruct $\Xi_b^- \to J/\psi\Xi^-$, $\Xi^- \to \Lambda\pi^-$ and $\Omega_b^- \to J/\psi\Omega^-$, $\Omega^- \to \Lambda K^-$, with $\Lambda \to p\pi^-$.

$\tau(\Xi_b^-) = 1.55^{+0.10}_{-0.09} \pm 0.03$	ps
$\tau(\Omega_b^-) = 1.54^{+0.26}_{-0.21} \pm 0.05$	ps

Source	$\Xi_b^- o J/\psi \Xi^-$	$\Omega_b^- \to J/\psi \Omega^-$
Trigger efficiency	9.9	6.5
Reconstruction and selection efficiency	29.0	45.0
Signal modelling	5.9	11.4
Combinatorial background modelling	3.0	3.0
Cross-feed background	0.1	11.1
Detector length scale	0.3	0.3
Total	31.4	48.3

- Best precision to date.
- Consistent with the recent CDF results

CDF, PRD 89, 072014 (2014)

$$\tau(\Xi_b^-) = 1.32 \pm 0.14 \pm 0.02$$
 ps

$$au(\Omega_b^-) = 1.66^{+0.53}_{-0.40} \pm 0.02 \text{ ps}$$
 (See talk by J. Rosner)

LHCb-PAPER-2014-021 arXiv:1405.7223 Accepted in PRL

3 fb⁻¹

- Until recently, little known about the Ξ_b^0 baryon.
 - Lifetime unmeasured
 - Mass only known to ~2.5 MeV (Λ_b mass known to ~0.3 MeV)
 - Relative production rates ? Are prod. properties (p_τ, η) similar to Λ_b ?

LHCb-PAPER-2014-021 arXiv:1405.7223 Accepted in PRL

3 fb⁻¹

- Until recently, little known about the Ξ_h^0 baryon.
 - Lifetime unmeasured
 - Mass only known to \sim 2.5 MeV (Λ_b mass known to \sim 0.3 MeV)
 - Relative production rates ? Are prod. properties (p_{τ} , η) similar to $\Lambda_{\rm b}$?
- In Ξ_b , Ω_b studies, decays with J/ ψ +hyperons have been 'the work horse'.
 - Use CF decays, J/ ψ for triggering, well-displaced vertices from hyperons with narrow widths. Hadron ID helpful, but not crucial.
 - In LHCb, large boosts, large $c\tau$ leads to a reduction in total efficiency for hyperon reco.

LHCb-PAPER-2014-021 arXiv:1405.7223 Accepted in PRL

3 fb⁻¹

- Until recently, little known about the Ξ_h^0 baryon.
 - Lifetime unmeasured
 - Mass only known to ~2.5 MeV (Λ_b mass known to ~0.3 MeV)
 - Relative production rates ? Are prod. properties (p_T , η) similar to Λ_b ?
- In Ξ_b , Ω_b studies, decays with J/ ψ +hyperons have been 'the work horse'.
 - Use CF decays, J/ψ for triggering, well-displaced vertices from hyperons with narrow widths. Hadron ID helpful, but not crucial.
 - In LHCb, large boosts, large $c\tau$ leads to a reduction in total efficiency for hyperon reco.
- To play into LHCb's strengths, use Cabibbo-suppressed decays ... no hyperons!

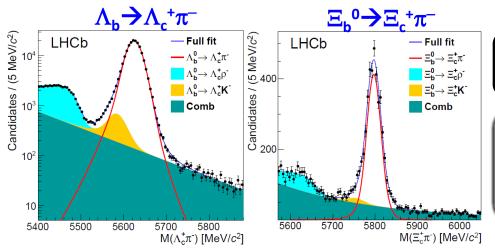
$$\Xi_{b}^{0} \xrightarrow{\mathsf{CF}} \Xi_{c}^{+} \pi^{-}, \quad \Xi_{c}^{+} \xrightarrow{\mathsf{CS}} pK^{-} \pi^{+} \qquad \frac{B(\Xi_{c}^{+} \to pK^{-} \pi^{+})}{B(\Xi_{c}^{+} \to \Xi^{-} \pi^{+} \pi^{+})B(\Xi^{-} \to \Lambda \pi^{-})B(\Lambda \to p\pi^{-})} \sim 0.34$$

Despite 3 X lower BF, still win big in total acceptance.

LHCb-PAPER-2014-021 arXiv:1405.7223 Accepted in PRL

3 fb⁻¹

- Until recently, little known about the Ξ_b^0 baryon.
 - Lifetime unmeasured
 - Mass only known to ~2.5 MeV (Λ_b mass known to ~0.3 MeV)
 - Relative production rates ? Are prod. properties (p_{τ} , η) similar to $\Lambda_{\rm b}$?
- In Ξ_b , Ω_b studies, decays with J/ ψ +hyperons have been 'the work horse'.
 - Use CF decays, J/ψ for triggering, well-displaced vertices from hyperons with narrow widths. Hadron ID helpful, but not crucial.
 - In LHCb, large boosts, large $c\tau$ leads to a reduction in total efficiency for hyperon reco.
- To play into LHCb's strengths, use Cabibbo-suppressed decays ... no hyperons!


$$\Xi_{b}^{0} \xrightarrow{\mathsf{CF}} \Xi_{c}^{+} \pi^{-}, \quad \Xi_{c}^{+} \xrightarrow{\mathsf{CS}} pK^{-}\pi^{+} \qquad \frac{B(\Xi_{c}^{+} \to pK^{-}\pi^{+})}{B(\Xi_{c}^{+} \to \Xi^{-}\pi^{+}\pi^{+})B(\Xi^{-} \to \Lambda\pi^{-})B(\Lambda \to p\pi^{-})} \sim 0.34$$

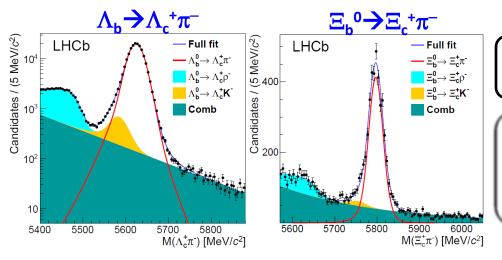
- Despite 3 X lower BF, still win big in total acceptance.
- Excellent normalization mode (identical final state): $\Lambda_b \rightarrow \Lambda_c \pi$, $\Lambda_c \rightarrow pK\pi$!
 - Most systematics cancel at 1st order in relative measurements.
 - Small differences in momentum spectra and lifetime of Ξ_c vs $\Lambda_c \rightarrow$ pK π

LHCb-PAPER-2014-021 arXiv:1405.7223 Accepted in PRL

3 fb⁻¹

☐ Precision mass

Mass of Ξ_b^0 ~5X more precise than prev. best from LHCb $\Delta M (\Xi_b^0 - \Lambda_b^0) = 172.44 \pm 0.39 \pm 0.17 \text{ MeV}$


$$M(\Xi_b^0) = 5791.80 \pm 0.39 \pm 0.17 \pm 0.26_{\Lambda_b^0} \text{ MeV}$$

LHCb-PAPER-2014-021 arXiv:1405.7223

Accepted in PRL

3 fb⁻¹

Precision mass

~188,000
$$\Lambda_{b} \rightarrow \Lambda_{c}^{+} \pi^{-}$$

~3,800 $\Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}$

Mass of Ξ_b^{0} ~5X more precise than prev. best from LHCb

$$\Delta M (\Xi_b^0 - \Lambda_b^0) = 172.44 \pm 0.39 \pm 0.17 \text{ MeV}$$

$$M(\Xi_b^0) = 5791.80 \pm 0.39 \pm 0.17 \pm 0.26_{\Lambda_b^0} \text{ MeV}$$

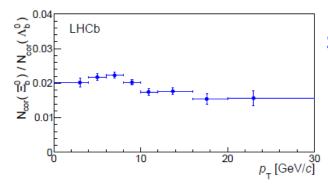
- \Box Lifetime of $\Xi_b{}^0$ baryon measured relative to that of Λ_b .
 - \square Λ_b lifetime now known to high precision (see talk by P. Gandini)
 - ☐ Perform sim. fit in bins of decay time, correct by relative efficiency (from simulation)

$$\frac{N_{cor}(\Xi_b^0)}{N_{cor}(\Lambda_b^0)} \propto e^{\beta t} \qquad \beta = \frac{1}{\tau_{\Lambda_b^0}} - \frac{1}{\tau_{\Xi_b^0}}$$

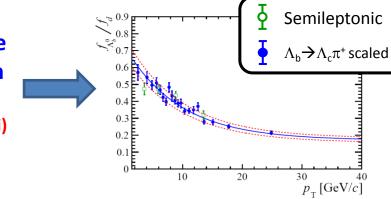
 $\mathbf{1}^{\text{st}}$ measurement of $\Xi_{b}^{\ 0}$ lifetime

$$\tau(\Xi_h^0) / \tau(\Lambda_h^0) = 1.006 \pm 0.018 \pm 0.010$$

$$\tau(\Xi_b^0) = 1.477 \pm 0.026 \pm 0.014 \pm 0.013_{\Lambda_b^0} \text{ ps}$$


- \square Λ_b and Ξ_b^0 lifetimes equal to within 2%
- Consistent with expectations from HQE

LHCb-PAPER-2014-021 arXiv:1405.7223


Accepted in PRL

3 fb⁻¹

 \Box Can also study the relative production rate vs (p_{τ} , η)

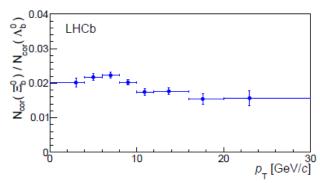
Steep p_T dependence of Λ_b/B^0 production also in Ξ_b^0 ! (see talk by Maria Zangoli)

☐ Relative production rate, integrated.

$$\frac{f_{\Xi_b^0}}{f_{\Lambda_b^0}} \cdot \frac{\mathcal{B}(\Xi_b^0 \to \Xi_c^+ \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} \cdot \frac{\mathcal{B}(\Xi_c^+ \to pK^- \pi^+)}{\mathcal{B}(\Lambda_c^+ \to pK^- \pi^+)} = (1.88 \pm 0.04 \pm 0.03) \times 10^{-2}.$$

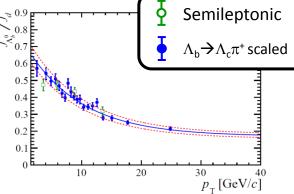
$$\approx 1 \qquad \approx 0.1$$

Consistent with $f_{\Xi_b^0} / f_{\Lambda_b^0} \approx 0.2$ with above assumptions


LHCb-PAPER-2014-021

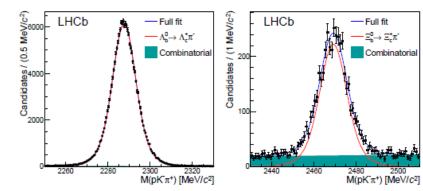
3 fb⁻¹

arXiv:1405.7223


Accepted in PRL

 \Box Can also study the relative production rate vs (p_T , η)

Steep p_T dependence of Λ_b/B^0 production also in Ξ_b^0 ! (see talk by Maria Zangoli)


☐ Relative production rate, integrated.

$$\frac{f_{\Xi_b^0}}{f_{\Lambda_b^0}} \cdot \frac{\mathcal{B}(\Xi_b^0 \to \Xi_c^+ \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} \cdot \frac{\mathcal{B}(\Xi_c^+ \to pK^- \pi^+)}{\mathcal{B}(\Lambda_c^+ \to pK^- \pi^+)} = (1.88 \pm 0.04 \pm 0.03) \times 10^{-2}.$$

$$\approx 1 \approx 0.1$$

Consistent with $f_{\Xi_b^0} / f_{\Lambda_b^0} \approx 0.2$ with above assumptions

 \square We also have a VERY CLEAN sample of Ξ_c^+ decays

Mass of $\Xi_c^+ \approx 4X$ more precise than WA

$$\Delta M(\Xi_c^+ - \Lambda_c^+) = 181.51 \pm 0.14 \pm 0.10 \text{ MeV}$$

$$M(\Xi_c^+) = 2467.97 \pm 0.14 \pm 0.10 \pm 0.14_{\Lambda_c^+} \text{ MeV}$$


New decay modes & CPV studies

 $\Lambda_b/\Xi_b^0 \rightarrow D^0ph^{\pm}$

LHCb-PAPER-2013-056 arXiv:1311.4823 PRD 89, 032001 (2014)

1 fb⁻¹

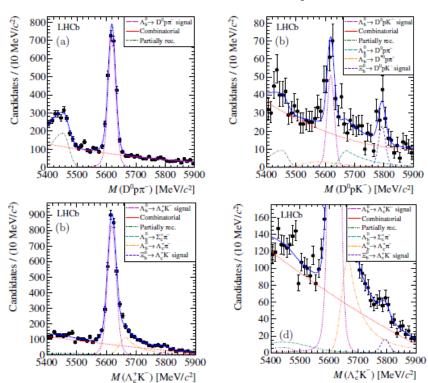
□ The $\Lambda_b \rightarrow D^0 pK$ decay can be used to measure the weak phase γ , ala $B^0 \rightarrow D^0 K^{*0}$.

Usual trick...

- Both diagrams are $O(\lambda^3)$

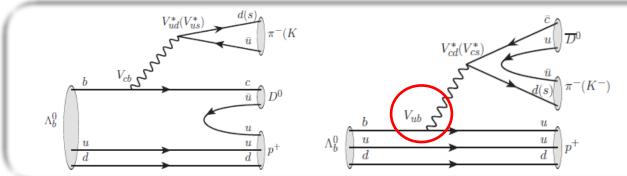
LHCb-PAPER-2013-056 arXiv:1311.4823 PRD 89, 032001 (2014)

1 fb⁻¹


□ The Λ_b → D⁰pK decay can be used to measure the weak phase γ , ala B⁰ → D⁰K*0.

Usual trick...

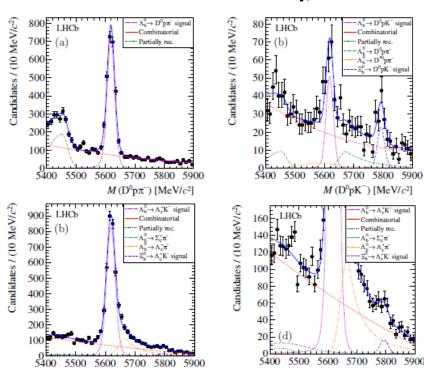
- Poth diagrams are $O(\lambda^3)$


 \square Start with CF $D^0 \rightarrow K\pi$ decay, to first observe these decays.

LHCb-PAPER-2013-056 arXiv:1311.4823

PRD 89, 032001 (2014) 1 fb⁻¹

 \Box The $\Lambda_b \rightarrow D^0$ pK decay can be used to measure the weak phase γ , ala $B^0 \rightarrow D^0 K^{*0}$.



Usual trick..

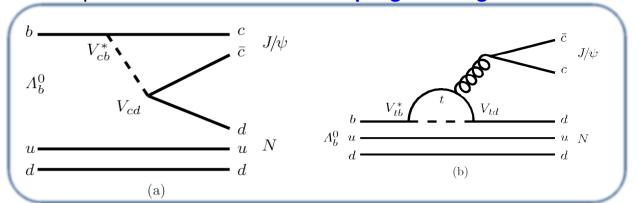
- Both diagrams are $O(\lambda^3)$

□ Start with CF $D^0 \rightarrow K\pi$ decay, to first observe these decays.

 $M(\Lambda_c^+K^-)$ [MeV/ c^2]

 $M(\Lambda_c^+K^-)$ [MeV/ c^2]

 $lue{}$ Several first observations in Λ_b and $\Xi_b{}^0$ decays!

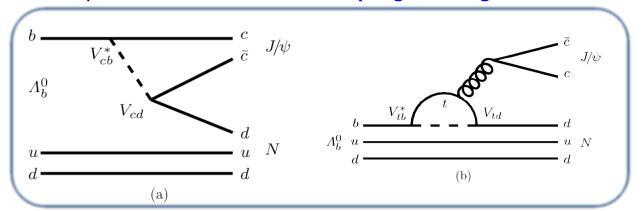

$$\begin{split} R_{A_b^0 \to D^0 p \pi^-} &\equiv \frac{\mathcal{B}(A_b^0 \to D^0 p \pi^-) \times \mathcal{B}(D^0 \to K^- \pi^+)}{\mathcal{B}(A_b^0 \to A_c^+ \pi^-) \times \mathcal{B}(A_c^+ \to p K^- \pi^+)} = 0.0806 \pm 0.0023 \pm 0.0035, \\ R_{A_b^0 \to D^0 p K^-} &\equiv \frac{\mathcal{B}(A_b^0 \to D^0 p K^-)}{\mathcal{B}(A_b^0 \to D^0 p \pi^-)} = 0.073 \pm 0.008 ^{+0.005}_{-0.006}, \\ R_{A_b^0 \to A_c^+ K^-} &\equiv \frac{\mathcal{B}(A_b^0 \to A_c^+ K^-)}{\mathcal{B}(A_b^0 \to A_c^+ \pi^-)} = 0.0731 \pm 0.0016 \pm 0.0016, \\ R_{\Xi_b^0 \to D^0 p K^-} &\equiv \frac{f_{\Xi_b^0} \times \mathcal{B}(\Xi_b^0 \to D^0 p K^-)}{f_{A_b^0} \times \mathcal{B}(A_b^0 \to D^0 p K^-)} = 0.44 \pm 0.09 \pm 0.06, \\ R_{\Xi_b^0 \to A_c^+ K^-} &\equiv \frac{\mathcal{B}(\Xi_b^0 \to A_c^+ K^-) \times \mathcal{B}(A_c^+ \to p K^- \pi^+)}{\mathcal{B}(\Xi_b^0 \to D^0 p K^-) \times \mathcal{B}(D^0 \to K^- \pi^+)} = 0.57 \pm 0.22 \pm 0.21, \end{split}$$

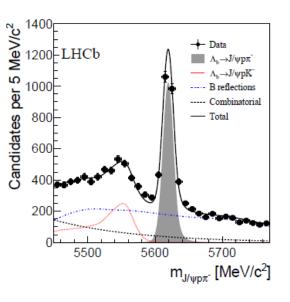
 \Box Good prospects for γ with larger data set

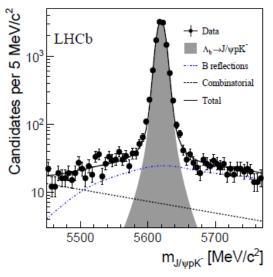
3 fb⁻¹

$\Lambda_b \rightarrow J/\psi p K^- \text{ and } \Lambda_b \rightarrow J/\psi p \pi^-$

- ☐ CP violation not yet observed in the baryon sector.
- \square The decay $\Lambda_b \rightarrow J/\psi pK$ recently observed by LHCb \rightarrow most precise $\tau(\Lambda_b)$ (see P. Gandini talk).
- □ The CS decay, $\Lambda_b \rightarrow J/\psi p\pi^-$, unobserved prior to this analysis, has 2 amplitudes, tree & penguin with different weak phase \rightarrow NP can enter in the penguin and give rise to direct CPV.




Submitted to JHEP

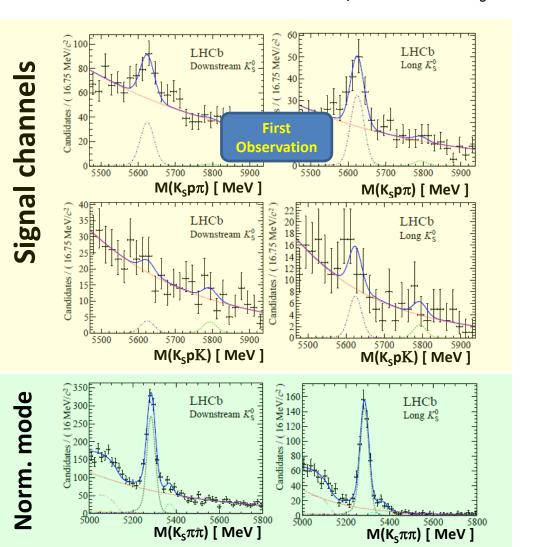

$\Lambda_b \rightarrow J/\psi p K^- \text{ and } \Lambda_b \rightarrow J/\psi p \pi^-$

3 fb⁻¹

- ☐ CP violation not yet observed in the baryon sector.
- □ The decay Λ_b J/ψpK recently observed by LHCb \rightarrow most precise $\tau(\Lambda_b)$ (see P. Gandini talk).
- □ The CS decay, $\Lambda_b \rightarrow J/\psi p\pi^-$, unobserved prior to this analysis, has 2 amplitudes, tree & penguin with different weak phase \rightarrow NP can enter in the penguin and give rise to direct CPV.

 \Box First observation of Λ_b → J/ψp π^-

$$\frac{B(\Lambda_b^0 \to J/\psi p\pi^-)}{B(\Lambda_b^0 \to J/\psi pK^-)} = (8.24 \pm 0.25 \pm 0.42)\%$$

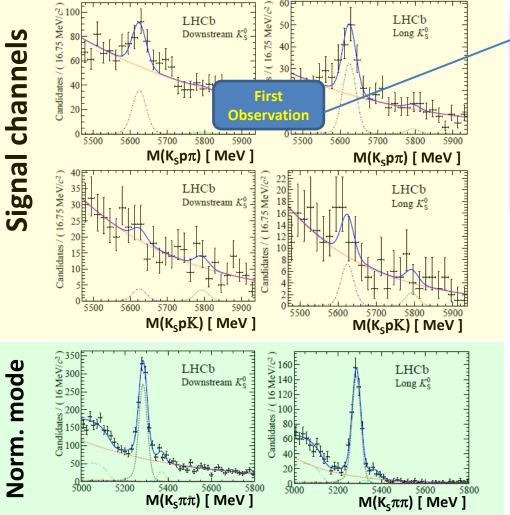

☐ Direct CPV wrt favored mode (|P/T|_{SM} <<1)</p>

$$\Delta \mathbf{A}_{CP} \equiv \mathbf{A}(\Lambda_b^0 \to J/\psi p\pi^-) - \mathbf{A}(\Lambda_b^0 \to J/\psi pR)$$
$$= (5.7 \pm 2.3 \pm 1.2)\%$$

Charmless: Search for $\Lambda_b/\Xi_b^0 \rightarrow K_S ph^{\pm}$

1 fb⁻¹

- Prior to this analysis, no 3-body charmless decays of b-baryons had been observed.
 Like B decays, 3-body charmless b-baryon decays contains penguin contributions → NP can enter.
- Opens up an interesting window to explore CPV in the b-baryon sector across the Dalitz plot.
- BFs normalized to the kinematically similar $B^0 \rightarrow K_s \pi^+ \pi^-$ decay.



Charmless: Search for $\Lambda_b/\Xi_b^0 \rightarrow K_s ph^{\pm}$

arXiv:1402.0770 JHEP 04 (2014) 087

1 fb⁻¹

- Prior to this analysis, no 3-body charmless decays of b-baryons had been observed.
 Like B decays, 3-body charmless b-baryon decays contains penguin contributions > NP can enter.
- Opens up an interesting window to explore CPV in the b-baryon sector across the Dalitz plot.
- BFs normalized to the kinematically similar $B^0 \rightarrow K_s \pi^+ \pi^-$ decay.

$$\frac{B(\Lambda_{b}^{0} \to K_{S}^{0} p \pi^{-})}{B(B^{0} \to K_{S}^{0} \pi^{+} \pi^{-})} = 0.25 \pm 0.04 \pm 0.02 \pm 0.02_{f_{\Lambda_{b}}/f_{d}}$$

$$\frac{B(\Lambda_{b}^{0} \to K_{S}^{0} p K^{-})}{B(B^{0} \to K_{S}^{0} \pi^{+} \pi^{-})} < 0.07 \quad @90\% \text{ CL}$$

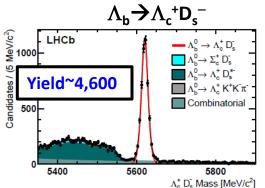
$$\frac{f_{\Xi_{b}^{0}}}{f_{d}} \frac{B(\Xi_{b}^{0} \to K_{S}^{0} p \pi^{-})}{B(B^{0} \to K_{S}^{0} \pi^{+} \pi^{-})} < 0.03 \quad @90\% \text{ CL}$$

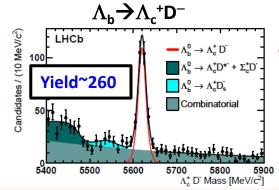
$$\frac{f_{\Xi_{b}^{0}}}{f_{d}} \frac{B(\Xi_{b}^{0} \to K_{S}^{0} p K^{-})}{B(B^{0} \to K_{S}^{0} \pi^{+} \pi^{-})} < 0.02 \quad @90\% \text{ CL}$$

See paper for additional $\Lambda_{\rm h}$ BFs

■ Measure direct CPV relative to CF mode $\Lambda_b \rightarrow \Lambda_c(pK_s)\pi^-$ (penguins should be negligible)

$$\Delta \mathbf{A}_{CP} \equiv \mathbf{A}(\Lambda_b^0 \to K_S^0 p \pi^-) - \mathbf{A}(\Lambda_b^0 \to \Lambda_c^+ (K_S^0 p) \pi^-)$$
$$= 0.22 \pm 0.13 \pm 0.03$$


Consistent with zero.


PRL 112, 202001 (2014)

3 fb⁻¹

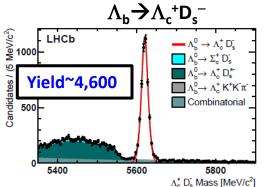
$\Lambda_b \rightarrow \Lambda_c^+ D_{(s)}^-$

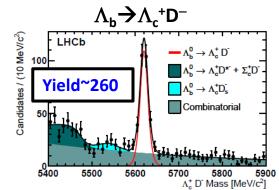
☐ First observation of b-baryons decaying to double-charm final states

$$\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D^-) / \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)$$

= 0.042 ± 0.003 (stat) ± 0.003 (syst)

Consistent with expected Cabibbo suppression

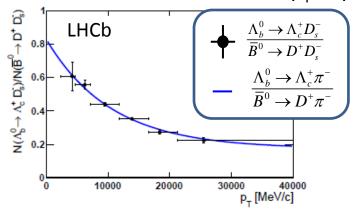

Bonus: Get most precise Λ_b mass measurement from measured mass difference M(Λ_b) – M(B⁰):


$$M(\Lambda_b^0) = 5619.30 \pm 0.34 \,\text{MeV}/c^2$$

PRL 112, 202001 (2014) 3 fb⁻¹

$\Lambda_b \rightarrow \Lambda_c^+ D_{(s)}^-$

First observation of b-baryons decaying to double-charm final states



$$\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D^-) / \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)$$

= 0.042 ± 0.003 (stat) ± 0.003 (syst)

Consistent with expected Cabibbo suppression

Bonus: Get most precise Λ_b mass measurement from measured mass difference M(Λ_b) – M(B⁰): $M(\Lambda_h^0) = 5619.30 \pm 0.34 \,\text{MeV}/c^2$

- \square B($\Lambda_b \rightarrow \Lambda_c D_s$): Normalize to B(B⁰ $\rightarrow D^- D_s^+$), but relative yield strong function of p_T .
- \square Measure double ratio, same p_T dependence, which cancels in ratio.

Several world best BF measurements

$$\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-) = (1.1 \pm 0.1) \times 10^{-2},$$

$$\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D^-) = (4.7 \pm 0.6) \times 10^{-4},$$

$$\mathcal{B}(B_s^0 \to D^+ D_s^-) = (2.7 \pm 0.5) \times 10^{-4},$$

$$\mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \Lambda_c^-) < 1.6 \times 10^{-5} [95\% \text{ C.L.}],$$

$$\mathcal{B}(B_s^0 \to \Lambda_c^+ \Lambda_c^-) < 8.0 \times 10^{-5} [95\% \text{ C.L.}].$$

$$\left[\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)}{\mathcal{B}(\overline{B}^0 \to D^+ D_s^-)}\right] / \left[\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)}{\mathcal{B}(\overline{B}^0 \to D^+ \pi^-)}\right] = 0.96 \pm 0.02 \text{ (stat)} \pm 0.06 \text{ (syst)},$$

Summary

- b-baryon rate at LHCb very large, 1 Λ_b for every 2 B⁰!
- Production, decays, b-baryon properties and CPV are beginning to be probed.
 - Lifetime of Ξ_b^0 went from unmeasured \rightarrow 2% precision ($\tau(\Lambda_b)$ known to ~1%)
 - Mass of Ξ_b^0 went from ±2.5 MeV \rightarrow ~0.4 MeV, almost on par with $\Lambda_b!$
- Other high yield modes of b-baryons are also being explored that exploit the excellent PID in LHCb.
- Expect more on rare decays, V_{cb}, V_{ub}, excited baryonic states soon..

The future is bright for b-baryon studies @ LHCb.

