Measurements of indirect *CP* asymmetries in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays

Michael Alexander on behalf of the LHCb collaboration

University of Glasgow

Beauty, Edinburgh University, 17th July 2014

- Mass eigenstates of D^0 system defined as $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$, with p and q complex. Masses and decay widths denoted by $m_{1,2}$ and $\Gamma_{1,2}$, resp.
- CP asymmetry of effective lifetime of D^0 decaying to CP eigenstate final state, f, is sensitive to indirect CPV

$$A_{\Gamma} \equiv \frac{\hat{\Gamma}(D^0 \to f) - \hat{\Gamma}(\overline{D}^0 \to f)}{\hat{\Gamma}(D^0 \to f) + \hat{\Gamma}(\overline{D}^0 \to f)} \approx \eta_{CP} \left[\frac{1}{2} (A_m + A_d) y \cos \phi - x \sin \phi \right].$$

- $\hat{\Gamma}$ is inverse of effective lifetime, η_{CP} the CP eigenvalue of f, $x \equiv 2(m_2 - m_1)/(\Gamma_1 + \Gamma_2), y \equiv (\Gamma_2 - \Gamma_1)/(\Gamma_1 + \Gamma_2),$ $A_m \equiv (|q/p|^2 - |p/q|^2)/(|q/p|^2 + |p/q|^2),$ $A_d \equiv (|A_f|^2 - |\bar{A}_f|^2)/(|A_f|^2 + |\bar{A}_f|^2)$, with A_f the decay amplitude, and $\phi \equiv arg(q\bar{A}_f/pA_f)$.
- ullet Indirect CPV for $\mathrm{D^0}$ predicted to be very small in Standard Model observation of significantly larger CPV would indicate new physics.

2 / 4

- $D^{*+} \to D^0 \pi_s^+$ gives D^0 flavour. $K^+ K^-$ and $\pi^+ \pi^-$ final states used.
- Combinatorial and partially reconstructed backgrounds discriminated by fit to D^0 mass and $\Delta m \equiv m(D^{*+}) m(D^0)$.
- Background from $B\to D^0 X$ decays is discriminated by fit to decay-time and χ^2 of hypothesis that D^0 originates directly from pp collision $\chi^2_{\text{IP}}.$
- Selection efficiency vs decay-time obtained from data using per-candidate acceptance functions.

Using 1 fb⁻¹ of data collected in 2011 yields:

$$A_{\Gamma}(\pi\pi) = (0.33 \pm 1.06 \pm 0.14) \times 10^{-3},$$

 $A_{\Gamma}(KK) = (-0.35 \pm 0.62 \pm 0.12) \times 10^{-3}.$

- Dominant systematics from modelling of the acceptance vs decay-time and ${\rm B} \! \to {\rm D}^0 X$ decays.
- Most precise measurements of their kind to date.
- No indication of *CP* violation.

Backup

K⁺K[−] Mass fit

$\pi^+\pi^-$ Fits

Decay-Time Ratios

Swimming

- Move PV to change decay-time of candidate.
- Re-evaluate selection decision at each decay-time to build the acceptance function for that candidate.
- Average acceptance calculated as sum of per-candidate acceptance functions.

Binned Fit

- Complementary technique of fitting for yields in bins of decay time also used.
- Acceptance effects cancel in ratio no need to know acceptance.
- Fits to $\rm K^+K^-$ data for decay-times 0.25 0.37 $\rm ps$, 0.74 0.78 $\rm ps$, and 1.55 1.80 $\rm ps$ (left to right):

Binned Fit, Mass and Δm Fits

• Fits to $\rm K^+K^-$ data for decay-times 0.25 - 0.37 $\rm \,ps,\,$ 0.74 - 0.78 $\rm \,ps,\,$ and 1.55 - 1.80 $\rm \,ps$ (left to right):

Binned Fit Results

$$A_{\Gamma}(\pi\pi) = (0.85 \pm 1.22 \pm 1.13) \times 10^{-3},$$

 $A_{\Gamma}(KK) = (0.50 \pm 0.65 \pm 0.89) \times 10^{-3}.$