Characteristics and magnetic field properties of the Hamamatsu R11265 Multi-Anode Photomultiplier Tubes

H.Luo, On behalf of the LHCb collaboration

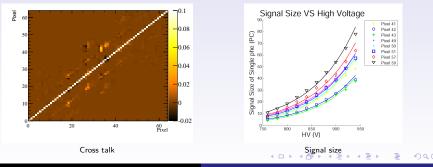
The 15th International Conference on B-Physics at Edinburgh

July 17, 2014

H.Luo, On behalf of the LHCb collaboration Characteristics and magnetic field properties of the Hamamats

Introduction

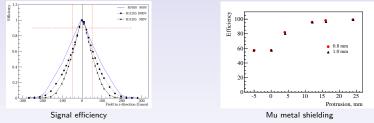
- Upgrade:
 - The p-p collision luminosity will increase to 2×10^{33} cm² s⁻¹, therefore a readout of 40MHz is required after the upgrade
 - HPDs of the RICH system will be replaced due to limited readout bandwidth
- Multi-Anode Photomultiplier Tube R11265:
 - Large bandwidth
 - Single photon sensitivity (200-600nm)
 - High Quantum Efficiency
 - Large active area
 - High spatial resolution
 - Low dark and leakage current
- Lab test:
 - Individual pixel characteristics
 - Magnetic field properties



★@> ★ E> ★ E> = E

Basic Characteristics

- Signal spectrum: clear signal and noise separation
- Cross talk: to the neighbours of < 2% and all neighbours of < 8%
- Signal size: exponentially increases with High Voltage (HV)
- Signal loss: typically less than 4%, exponentially reduces with HV, larger gain pixels show smaller signal loss


H.Luo, On behalf of the LHCb collaboration

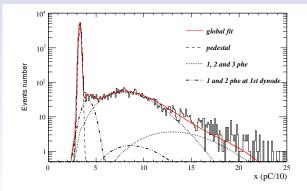
Characteristics and magnetic field properties of the Hamamats

Magnetic field properties and Conclusion

- Magnetic field properties:
 - Signal efficiency is sensitive to magnetic field, especially when the magnetic field is perpendicular to the UV glass
 - Mu metal can effectively shield the magnetic field

- Conclusion:
 - The low cross talk, small signal loss, large bandwidth and effective Mu metal shielding properties make R11265 the most prospective photon detector for the LHCb upgrade

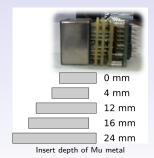
Back Up


H.Luo, On behalf of the LHCb collaboration Characteristics and magnetic field properties of the Hamamats

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

Signal spectrum

- Pulsed LED light is used to illuminate the R11265
- Signal spectrum is taken by a single test system



A typical signal spectrum fitted by the combination of Poisson and Gaussian distributions.

Characteristics and magnetic field properties of the Hamamats

- Magnetic field can significantly affect the signal efficiency
- Mu metal is adopted to shield a 2×2 MaPMTs matrix

Mu metal

H.Luo, On behalf of the LHCb collaboration Characteristics and magnetic field properties of the Hamamats