Amplitude analysis in $\mathbf{B} \rightarrow \mathbf{J} / \psi \mathbf{X}$ decays

@GreigCowan (Edinburgh) on behalf of the LHCb collaboration
\#beauty2014, 14th July

Overview

- Amplitude analysis of $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi$
- [arXiv:1404.5673, PRD]
- Amplitude analysis of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$
- [PRD 89, 092006 (2014)]

- First observation of $\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{J} / \psi \mathrm{p} \overline{\mathrm{p}} \pi^{+}$
- [LHCb-PAPER-2014-039]

All results use $1 \mathrm{fb}^{-1} @ 7 \mathrm{TeV}$ and $2 \mathrm{fb}^{-1} @ 8 \mathrm{TeV}$ data

Motivation

- $\mathrm{B}^{0}{ }_{(\mathrm{s})} \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$decays very useful for CP violation measurements and new physics searches.
- Also excellent place to study substructure of light mesons that decay to $\pi^{+} \pi^{-}$.
- Mass ordering is reversed between the scalar and vector mesons nonets below 2 GeV not well understood.

Isospin	$I=0$	$I=1 / 2$	$I=0$	$I=1$
Scalar mesons	$f_{0}(500)$	$\kappa(800)$	$f_{0}(980)$	$a_{0}(980)$
Vector mesons	$\phi(1020)$	$K^{*}(892)^{0}$	$\omega(783)$	$\rho(776)$

- Are the scalar mesons $\left[\mathrm{f}_{0}(500), \mathrm{f}_{0}(980)\right] \mathrm{q} \overline{\mathrm{q}}$ or tetraquarlks or a mixture?

Reminder about Dalitz plots - 3 body decay

$$
\begin{gathered}
\text { scalar } \rightarrow 3 \text { scalars } \\
\boldsymbol{P}, M \rightarrow=\frac{1}{(2 \pi)^{3}} \frac{1}{32 M^{3}} \overline{\left.\mathscr{M}\right|^{2}} d m_{12}^{2} d m_{23}^{2}
\end{gathered}
$$

Constraints
Degrees of freedom

3 four-vectors	+12
All decay in same	-3
plane $\left(p_{i, z}=0\right)$	-3
$E_{i}^{2}=m_{i}^{2}+p_{i}^{2}$	-3
Energy + momentum conservation	-1
Rotate system in plane	
Total	+2

- Configuration of decay depends on angular momentum of decay products.
- All dynamical information contained in $|\mathcal{M}|^{2}$.
- Density plot of $\mathrm{m}_{12}{ }^{2}$ vs. $\mathrm{m}_{23}{ }^{2}$ to infer information on $|\mathcal{M}|^{2}$.

4D amplitude analysis (scalar \rightarrow vector scalar scalar)

- $\mathrm{B}^{0}{ }_{(\mathrm{s})} \longrightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}, \quad \mathrm{J} / \psi \longrightarrow \mu^{+} \mu^{-}$so need to consider 3-helicities in final state.
- Use 4 variables to describe the system: m_{hh} and 3 angles $\Omega=\left(\theta_{\mathrm{hh}}, \theta_{\mathrm{J} / \psi}, \chi\right)$.

Constraints	Degrees of freedom
3 four-vectors	+12
All decay in same plane $\left(p_{i, z}=0\right)$ -3 $E_{i}^{2}=m_{i}^{2}+p_{i}^{2}$ -3 Energy + momentum -3 conservation -1 Rotate system in plane +2 Vector helicity +4 Total	

- Use the Isobar approach.
- Build amplitude from sum of two-body $\pi^{-} \pi^{+}$ resonances.
- Overlapping and interfering Breit-Wigner and Flatté resonances.
- Include efficiency and background.

$\boldsymbol{\Lambda}_{\mathbf{b}} \longrightarrow \mathbf{J} / \psi \mathbf{K}^{-} \mathbf{p}$
$\mathrm{m}\left(\mathrm{J} / \psi \pi^{+} \pi^{-}\right)[\mathrm{MeV}]$

$\mathbf{B}^{0} \longrightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-}$: background

- Main background is combinatorial, taken from same-sign events.
- Use simulation to get shape of partially reconstructed B^{0} decays and reflections from B^{0} and Λ_{b}.
- Use mixed sample to get 4D background parameterisation.

$\mathrm{B}^{0} \longrightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-}$: efficiency

$$
\varepsilon\left(m_{\pi \pi}, \theta_{\pi \pi}, \theta_{J / \psi}, \chi\right)=\varepsilon\left(m_{J / \psi \pi^{+}}^{2}, m_{J / \psi \pi^{-}}^{2}\right) \times \varepsilon\left(\theta_{J / \psi}, m_{\pi \pi}\right) \times \varepsilon\left(\chi, m_{\pi \pi}\right)
$$

- $\mathrm{LHCb}<100 \%$ efficient at reconstructing the decay particles in 4D space.
- Large simulated signal sample used to model 4D efficiency.
- Use simulation to show that efficiency factorises.

$\mathbf{B}^{0} \longrightarrow \mathbf{J} / \psi \pi^{+} \pi^{-}$: amplitude model

- Build amplitude from all possible resonances and a non-resonant (NR) component.
- Use Poissonian χ^{2} to distinguish models.
- Systematics: alternative models (Bugg and $G \& S)$ used for $f_{0}(500)$ and ϱ resonances.
- Fix resonance mass and width to PDG values.

Resonance	Spin	Helicity	Resonance formalism	Mass (MeV)	Width (MeV)	Source
$\rho(770)$	1	$0, \pm 1$	BW	775.49 ± 0.34	149.1 ± 0.8	PDG [18]
$f_{0}(500)$	0	0	BW	513 ± 32	335 ± 67	CLEO [26]
$f_{2}(1270)$	2	$0, \pm 1$	BW	1275.1 ± 1.2	$185.1_{-2.4}^{+2.9}$	PDG [18]
$\omega(782)$	1	$0, \pm 1$	BW	782.65 ± 0.12	8.49 ± 0.08	PDG [18]
$f_{0}(980)$	0	0	Flatté	-	-	See text
$\rho(1450)$	1	$0, \pm 1$	BW	1465 ± 25	400 ± 60	PDG [18]
$\rho(1700)$	1	$0, \pm 1$	BW	1720 ± 20	250 ± 100	PDG [18]
$f_{0}(1500)$	0	0	BW	1461 ± 3	124 ± 7	LHCb [27]
$f_{0}(1710)$	0	0	BW	1720 ± 6	135 ± 8	PDG [18]

$\mathbf{B}^{0} \longrightarrow \mathbf{J} / \psi \pi^{+} \pi^{-}$: fit result

Component	Fit fraction (\%)	Transversity fractions (\%)			
		$\tau=0$	$\tau=\\|$	$\tau=\perp$	
$\rho(770)$	$63.1 \pm 2.2_{-2.2}^{+3.4}$	$57.4 \pm 2.0_{-3.1}^{+1.3}$	$23.4 \pm 1.7_{-1.3}^{+1.0}$	$19.2 \pm 1.7_{-1.2}^{+3.8}$	
$f_{0}(500)$	$22.2 \pm 1.2_{-3.5}^{+2.6}$	1	0	0	
$f_{2}(1270)$	$7.5 \pm 0.6_{-0.6}^{+0.4}$	$62 \pm 4_{-4}^{+2}$	$11 \pm 5 \pm 2$	$26 \pm 5_{-2}^{+4}$	
$\omega(782)$	$0.68_{-0.14-0.13}^{+0.20+0.17}$	39_{-13-3}^{+15+4}	60_{-15-4}^{+12+3}	$1_{-1}^{+9} \pm 1$	
$\rho(1450)$	$11.6 \pm 2.8 \pm 4.7$	$58 \pm 10_{-23}^{+14}$	$27 \pm 13_{-11}^{+7}$	$15 \pm 7_{-10}^{+28}$	
$\rho(1700)$	$5.1 \pm 1.2 \pm 3.0$	$40 \pm 11_{-23}^{+13}$	$24 \pm 14_{-10}^{+7}$	$36 \pm 14_{-9}^{+28}$	

- Baseline model keeps resonances with fit fractions $>3 \sigma$.
- Main systematics come from model variation, efficiency parameterisation and PDG mass/ width of resonances.
- CP-even fraction is 56.0\%.
- Future CP violation measurements possible.

$$
f_{i}=\frac{\int\left|A_{i}\left(m_{\pi \pi}, \Omega\right)\right|^{2} d m_{\pi \pi} d \Omega}{\int\left|\sum_{k} A_{k}\left(m_{\pi \pi}, \Omega\right)\right|^{2} d m_{\pi \pi} d \Omega}
$$

Transversity basis describes angular momentum states in a basis of CP eigenstates

Spin	η_{0}	$\eta_{\\|}$	η_{\perp}
0	-1		
1	1	1	-1
2	-1	-1	1

$\mathbf{B}^{0} \rightarrow \mathbf{J} / \psi \pi^{+} \pi^{-}:$fit projections

$\mathrm{B}_{\mathrm{s}}{ }_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$: amplitude model

[PRD 89, 092006 (2014)]

- D-wave [$\mathrm{f}_{2}(1270), \mathrm{f}_{2}{ }^{\prime}$ (1525)] fraction is 2.3% in both solutions. CP-even
- Systematics: alternative model including $\varrho(770)$ resonance.
- CP-even fraction < 2.3\% @ 95\% CL.
- CP violation measurement with $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-}$
- See talk by P. Clarke, [arXiv: 1405.4140]

Two suitable models

- Sol-I without NR; Sol-II with NR
- 5 resonances
- No significant $f_{0}(500), \varrho(770)$

$\mathrm{B}^{\mathbf{0}} \longrightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$: S-wave dominates

- Two S-wave solutions.
- Plot amplitude and phase in bins of $m\left(\pi^{+} \pi^{-}\right)$.
- Consistent amplitude but different phase

Component	Solution I	Solution II
$f_{0}(980)$	$70.3 \pm 1.5_{-5.1}^{+0.4}$	$92.4 \pm 2.0_{-16.0}^{+0.8}$
$f_{0}(1500)$	$10.1 \pm 0.8_{-0.3}^{+1.1}$	$9.1 \pm 0.9 \pm 0.3$
$f_{0}(1790)$	$2.4 \pm 0.4_{-0.2}^{+5.0}$	$0.9 \pm 0.3_{-0.1}^{+2.5}$

- Phase cannot be well determined due to lack of P\&D waves.

Width of curve represents statistical uncertainty

$\mathrm{B}^{\mathbf{0}} \longrightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$: fit projections

Light quark spectroscopy with $\mathbf{B}^{\mathbf{0}}{ }_{(\mathrm{s})} \longrightarrow \mathbf{J} / \psi \pi^{+} \boldsymbol{\pi}^{-}$

- Are the scalar mesons $\left[\sigma=f_{0}(500), \mathrm{f}_{0}=\mathrm{f}_{0}(980)\right] \mathrm{q} \bar{q}$ or tetraquarks or a mixture?

Scalar meson mixing

$$
\begin{array}{rl|l}
\left|f_{0}(980)\right\rangle & =\cos \varphi_{m}|s \bar{s}\rangle+\sin \varphi_{m}|n \bar{n}\rangle \\
\left|f_{0}(500)\right\rangle & =-\sin \varphi_{m}|s \bar{s}\rangle+\cos \varphi_{m}|n \bar{n}\rangle, & \begin{aligned}
\left|f_{0}(980)\right\rangle & =\frac{1}{\sqrt{2}}(|[s u][\bar{s} \bar{u}]\rangle+|[s d][\bar{s} \bar{d}]\rangle) \\
\left|f_{0}(500)\right\rangle & =|[u d][\bar{u} \bar{d}]\rangle .
\end{aligned} \\
\text { where }|n \bar{n}\rangle & \equiv \frac{1}{\sqrt{2}}(|u \bar{u}\rangle+|d \bar{d}\rangle) .
\end{array}
$$

Light quark spectroscopy with $\mathbf{B}^{\mathbf{0}}{ }_{(\mathrm{s})} \rightarrow \mathbf{J} / \psi \pi^{+} \pi^{-}$

- Are the scalar mesons $\left[\sigma=f_{0}(500), \mathrm{f}_{0}=\mathrm{f}_{0}(980)\right] \mathrm{q} \overline{\mathrm{q}}$ or tetraquarks or a mixture?

Scalar meson mixing

$$
\begin{aligned}
\left|f_{0}(980)\right\rangle & =\cos \varphi_{m}|s \bar{s}\rangle+\sin \varphi_{m}|n \bar{n}\rangle \\
\left|f_{0}(500)\right\rangle & =-\sin \varphi_{m}|s \bar{s}\rangle+\cos \varphi_{m}|n \bar{n}\rangle
\end{aligned}
$$

where $|n \bar{n}\rangle \equiv \frac{1}{\sqrt{2}}(|u \bar{u}\rangle+|d \bar{d}\rangle)$.

$$
\begin{aligned}
\left|f_{0}(980)\right\rangle & =\frac{1}{\sqrt{2}}(|[s u][\bar{s} \bar{u}]\rangle+|[s d][\bar{s} \bar{d}]\rangle) \\
\left|f_{0}(500)\right\rangle & =|[u d][\bar{u} \bar{d}]\rangle
\end{aligned}
$$

[Fleischer, Knegjens Eur.Phys.J. C71 (2011) 1832]
B^{0}

$$
\frac{\Gamma\left(\bar{B}^{0} \rightarrow J / \psi f_{0}\right)}{\Gamma\left(\bar{B}^{0} \rightarrow J / \psi \sigma\right)}=\frac{\left|F_{B^{0}}^{f_{0}}\left(m_{J / \psi}^{2}\right)\right|^{2}}{\left|F_{B^{0}}^{\sigma}\left(m_{J / \psi}^{2}\right)\right|^{2}} \frac{\Phi_{B_{0}^{0}}^{f_{0}}}{\Phi_{B^{0}}^{\sigma}} \times \mathrm{r}_{\mathrm{B} 0}
$$

$B^{0}{ }_{s}$

$$
\frac{\Gamma\left(\bar{B}_{s}^{0} \rightarrow J / \psi \sigma\right)}{\Gamma\left(\bar{B}_{s}^{0} \rightarrow J / \psi f_{0}\right)}=\frac{\left|F_{B_{s}^{0}}^{\bar{\sigma}}\left(m_{J / \psi}^{2}\right)\right|^{2} \Phi^{\sigma}}{\left|F_{B_{s}^{0}}^{f_{0}^{0}}\left(m_{J / \psi}^{2}\right)\right|^{2}} \frac{\Phi_{B_{s}}^{f_{0}}}{A_{s}^{0}} \times \mathrm{r}_{\mathrm{Bs}}
$$

Light quark spectroscopy with $\mathbf{B}^{0}(\mathrm{~s}) \rightarrow \mathbf{J} / \psi \pi^{+} \pi^{-}$

1. Measure the ratio of branching fractions for B^{0} and B^{0} s.
2. Correct for $\operatorname{BR}\left(\mathrm{f}_{0} \rightarrow \pi^{+} \pi^{-}\right)$and phase space ratio. $\longleftarrow \frac{\Phi(500)}{\Phi(980)}=1.25$
3. Compute r_{B}.

Both consistent with 0

First observation of $\mathbf{B}_{\mathbf{c}} \rightarrow \mathrm{J} / \psi \mathrm{p} \overline{\mathrm{p}} \boldsymbol{\pi}^{+}$

- First observation of baryonic decay mode of B_{c}.
- Study mechanism of baryon production: $\sigma\left(\mathrm{B}_{\mathrm{c}}\right) / \sigma(\mathrm{B}) \sim 10^{-3}$
- BDT: signal from MC, bkg from sidebands.
- $\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{J} / \psi \mathrm{p} \overline{\mathrm{p}} \pi^{+}$mass resolution fixed to 6.4 MeV , taken from ratio in MC and fit to $\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{J} / \psi \pi^{+}$in data.
- Best mass measurement, momentum scale dominates.

$$
\mathrm{m}\left(\mathrm{~B}_{\mathrm{c}}\right)=6274.67 \pm 1.20 \mathrm{MeV}
$$

Average: 6274.67 ± 1.20

LHCb mass combination

First observation of $B_{c} \rightarrow J / \psi p \bar{p} \pi^{+}$

$$
\frac{\mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi p \bar{p} \pi^{+}\right)}{\mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi \pi^{+}\right)}=0.143_{-0.034}^{+0.039} \text { (stat) } \pm 0.013 \text { (syst) }
$$

$$
\frac{\mathcal{B}\left(B^{0} \rightarrow D^{*-} p \bar{p} \pi^{+}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{*-} \pi^{+}\right)}=0.17 \pm 0.02
$$

Consistent with factorisation

- Ratio of efficiencies $=(4.76 \pm 0.06) \%$ (mostly from simulation)
- Dominant systematics from B_{c} decay model in simulation and proton reconstruction (determined from sample of $\Lambda_{c} \rightarrow \mathrm{pK}^{-} \pi^{+}$).
- Bkgd subtracted mass distributions consistent with phase-space simulation.
- Looking forward to more data that may allow amplitude analysis to be performed.

Summary

- LHCb has used $3 \mathrm{fb}^{-1}$ of data to study $\mathrm{B}^{0}{ }_{(\mathrm{s})} \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$ decays.
- Excellent environment to perform light hadron spectroscopy by studying resonant structure of $\Pi^{+} \Pi^{-}$system.
- Opened up new possibilities for performing CP violation measurements with these decays.
- Rule out $f_{0}(980)$ as a pure tetraquark at 8σ.
- LHCb is leading the way with B_{c} meson physics
- Most precise mass measurement.
- First observation of many new (baryonic) decay mode.
- Opens up potential amplitude analyses in the future.

Stay tuned for more results with Run-2

B A CKUP

The LHCb detector

A typical LHCb event

Flatté amplitude

- Flatté provides better description of line shape when a second channel opens up near resonance mass.
- Constants gпп and gкк are coupling constants.

$$
\begin{gathered}
A_{R}\left(s_{23}\right)=\frac{1}{m_{R}^{2}-s_{23}-i m_{R}\left(g_{\pi \pi} \rho_{1}+g_{K K} \rho_{2}\right)} \\
\rho_{\pi \pi}=\frac{2}{3} \sqrt{1-\frac{4 m_{\pi^{ \pm}}^{2}}{m^{2}\left(\pi^{+} \pi^{-}\right)}}+\frac{1}{3} \sqrt{1-\frac{4 m_{\pi^{0}}^{2}}{m^{2}\left(\pi^{+} \pi^{-}\right)}}, \\
\rho_{K K}=\frac{1}{2} \sqrt{1-\frac{4 m_{K^{ \pm}}^{2}}{m^{2}\left(\pi^{+} \pi^{-}\right)}}+\frac{1}{2} \sqrt{1-\frac{4 m_{K^{0}}^{2}}{m^{2}\left(\pi^{+} \pi^{-}\right)}} .
\end{gathered}
$$

Reminder about Dalitz plots $d \Gamma=\frac{1}{(2 \pi)^{3}} \frac{1}{32 M^{3}} \overline{\operatorname{lal}^{2}} d m_{12}^{2} d m_{23}^{2}$
Spin-l resonance

Peaks in distribution do not correspond to a real resonance - just a shadow/reflection

$$
\mathrm{M} \longrightarrow \mathrm{R}^{\longrightarrow} \mathrm{P}_{1}
$$

Amplitude model

- Use the Isobar approach.
- Build amplitude from sum of two-body $\Pi^{-} \Pi^{+}$resonances.
- Overlapping and interfering Breit-Wigner and Flatté resonances.

Sum over the kresonances
 $|\mathcal{M}|^{2}=\sum_{\Delta \lambda_{\mu}=-1,1}\left|\sum_{\lambda_{\psi}=-1,0,1} \sum_{k} A_{k, \lambda_{\psi}}\left(m_{K \pi}, \Omega \mid m_{0 k}, \Gamma_{0 k}\right)\right|^{2}$

Amplitude analysis of $\mathrm{B}^{0} \longrightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-}$

- Similar analysis to Z(4430)
- Build 4D matrix element from overlapping $\Pi^{+} \Pi^{-}$resonances.
- Correct for efficiency.
- No sign of exotic $J / \psi \pi^{+}$resonances...

$B^{0} \longrightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-}$: harmonic moments

- Efficiency corrected and background subtracted m (חா) distribution, weighted with spherical harmonics, $\mathrm{Y}_{1}{ }^{0}\left(\cos \theta_{\text {пп }}\right)$.

- Structure of each moment gives qualitative picture of spin contributions and their interference.

$\mathrm{B}^{0}{ }_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$: harmonic moments

- Efficiency corrected and background subtracted $\mathrm{m}(\Pi \Pi)$ distribution, weighted with spherical harmonics, $\mathrm{Y}_{1}{ }^{0}\left(\cos \theta_{\text {пп }}\right)$.
- Structure of each moment gives qualitative picture of spin contributions and their interference.

$\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{J} / \psi \mathbf{X}$ decays, $\mathrm{J} / \psi \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$

- Interesting to study due to B_{c} being made of two heavy quarks ($\bar{b} \mathrm{c}$).
- Only decays weakly, so has longer lifetime ($\sim 0.5 \mathrm{ps}$) than quarkonia, but shorter lifetime than other B mesons ($\sim 1.5 \mathrm{ps}$) due to c quark.
- Discovered by CDF, now observed in many different decay modes by LHCb.
- At LHCb, use clean signature of the $\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}$to trigger these modes.
- Simulation needed to correct for efficiency of selection and detector acceptance.
- Use BCVEGPY generator to simulate $g g \rightarrow B_{c}$

Evidence for $\mathbf{B}_{\mathrm{c}} \rightarrow \mathrm{J} / \psi 3 \pi^{+} \mathbf{2} \boldsymbol{\pi}^{-}$

Parameter		
$m_{\mathrm{B}_{\mathrm{c}}^{+}}$	$\left[\mathrm{MeV} / c^{2}\right]$	6273 ± 3
$\sigma_{\mathrm{B}_{\mathrm{c}}^{+}}$	$\left[\mathrm{MeV} / c^{2}\right]$	11.4 ± 3.4
$N_{\mathrm{B}_{\mathrm{c}}^{+} \rightarrow \mathrm{J} / 43 \pi^{+} 2 \pi^{-}}$		32 ± 8

- NN for muon and pion ID.
- $\mathrm{p}_{\mathrm{T}}\left(\Pi^{+}\right)>400 \mathrm{MeV}$ and IP $\chi 2$ cuts.
- Suppress combinatorial bkg by requiring vertex χ^{2} of all $\mathrm{J} / \psi \Pi^{+}$combinations <20.
- Measure BR relative to $\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{J} / \psi \Pi^{+}$selected with similar selection.
- From simulation, efficiency to reconstruct 4 extra pions leads to factor 100 lower efficiency.

100 from efficiency and acceptance? ${ }^{1}$

Evidence for $\mathbf{B}_{\mathrm{c}} \rightarrow \mathrm{J} / \psi 3 \pi^{+} 2 \pi^{-}, \mathrm{J} / \psi \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$

- No resonant structure seen in combination of final state particles.
- Dominant systematic from fit model and decay model in simulation.
- Reweight MC with $\mathrm{m}\left(3 \pi^{+} 2 \pi^{-}\right)$spectrum.
- Good agreement with theory predictions of $\mathbf{0 . 9 5}$ and $\mathbf{1 . 1}$ [PRD86 (2012) 074024]
- Consistent with measurements in B^{+} and B^{0} sectors, expected from factorisation.
- $\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{J} / \psi \mathrm{W}^{+}$form factors and experimental information from $\tau \rightarrow \mathbf{n} \pi$

$$
\frac{\mathcal{B}\left(\mathrm{B}_{\mathrm{c}}^{+} \rightarrow \mathrm{J} / \psi 3 \pi^{+} 2 \pi^{-}\right)}{\mathcal{B}\left(\mathrm{B}_{\mathrm{c}}^{+} \rightarrow \mathrm{J} / \psi \pi^{+}\right)}=1.74 \pm 0.44 \pm 0.24
$$

$$
\begin{aligned}
& \frac{\mathcal{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{*-} 3 \pi^{+} 2 \pi^{-}\right)}{\mathcal{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{*-} \pi^{+}\right)}=1.70 \pm 0.34 \\
& \frac{\mathcal{B}\left(\mathrm{~B}^{+} \rightarrow \overline{\mathrm{D}}^{* 0} 3 \pi^{+} 2 \pi^{-}\right)}{\mathcal{B}\left(\mathrm{B}^{+} \rightarrow \overline{\mathrm{D}}^{* 0} \pi^{+}\right)}=1.10 \pm 0.24
\end{aligned}
$$

Factorisation in \mathbf{B}_{c} decays

- Factorise the decay amplitude into two independent parts
- $\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{J} / \psi \mathrm{W}^{+}$
- form factors
- experimental information on W^{+}from $\tau \rightarrow \mathrm{n} \pi$

