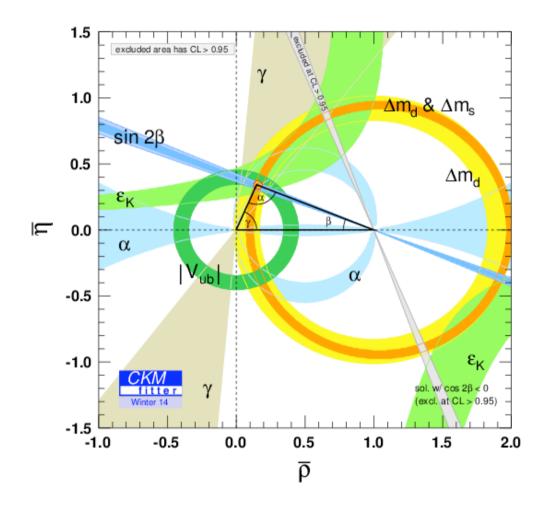


Measurements of γ from LHCb

Sneha Malde


University of Oxford

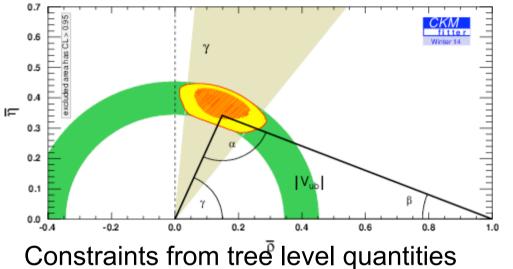
On behalf of the LHCb Collaboration

Beauty 2014: 14th -18th July

Sneha Malde 15th July 2014 Supported by the L'Oreal UK and Ireland Fellowship For Women In Science

The CKM angle γ

CKM matrix parameterises quark couplings


The matrix has one complex phase that results in CPV

Unitarity triangle is a representation of this CPV

$$\gamma = -\arg\left(\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

 $\boldsymbol{\gamma}$ is the least well known angle

Precision measurement -> New Physics test bed

γ is the only angle directly accessible in tree decays

"Standard Model" measurement possible

Direct measurements (all results combined):

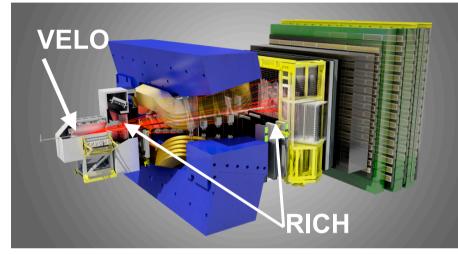
 $70.0^{+7.7}_{-9.9}$

Indirect precision from global CKM fit: $66.5_{-2.5}^{+1.3\circ}$

Despite recent progress in the direct measurements better precision still required to test for New Physics.

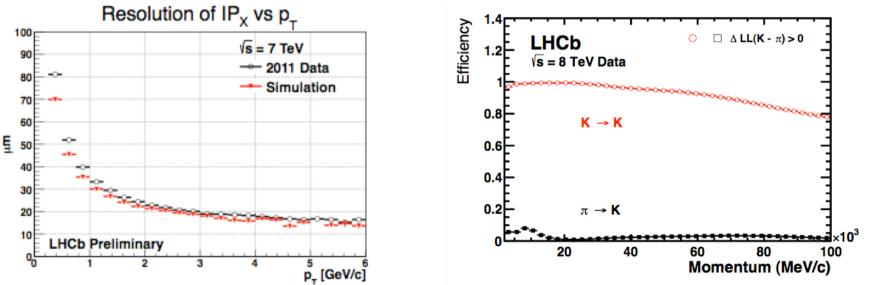
Goal : Improve the direct precision

This talk

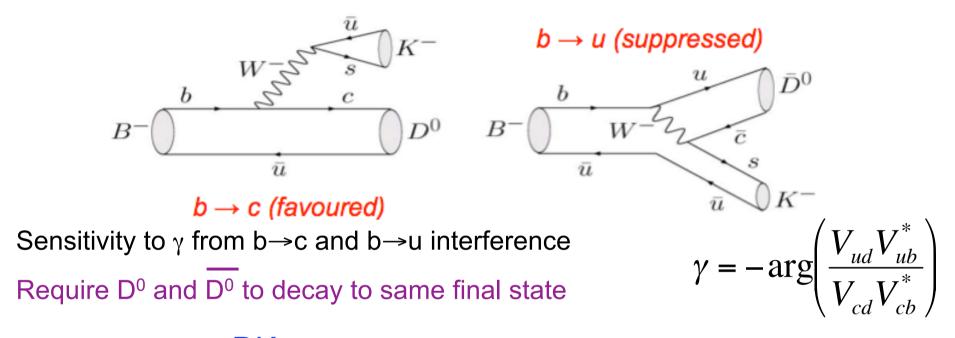

4 new exciting recent results from LHCb

- Model Independent B \rightarrow DK, D \rightarrow K_shh 3 fb⁻¹
- Model dependent B \rightarrow DK, D \rightarrow K_s $\pi\pi$ 1 fb⁻¹
- B⁰→DK^{0*}, D→hh
- B_s→D_sK

All papers to be submitted to journals soon


NEW

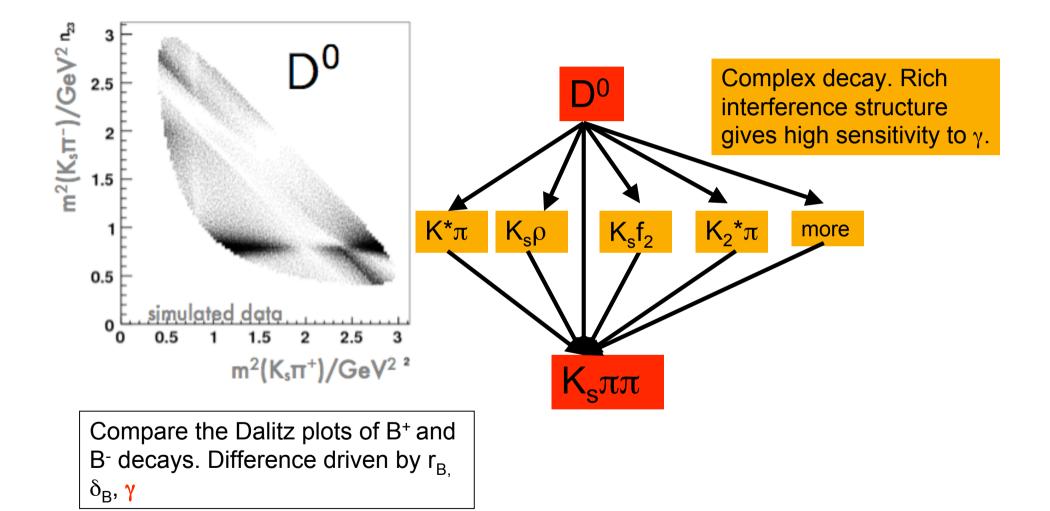
The LHCb detector

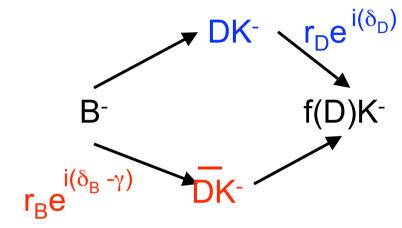

All measurements profit from the VELO for displaced vertices and the RICH for particle identification

 $B_s \rightarrow D_s K$ benefits in particular from the excellent time resolution.

Sneha Malde 15th July 2014

$B \rightarrow DK$, $D \rightarrow K_s hh$ - the golden mode




Self-conjugate three body final states are particularly sensitive "GGSZ"

Sneha Malde 15th July 2014

D \rightarrow **K**_s $\pi\pi$: accessible from both D flavours

Accounting for the D strong phase difference

Complication:

D strong phase variation on Dalitz plot 2 methods of dealing with that both pursued at LHCb

Model-independent: Count and compare signal yields in Dalitz plot regions

Counting is (relatively) easy

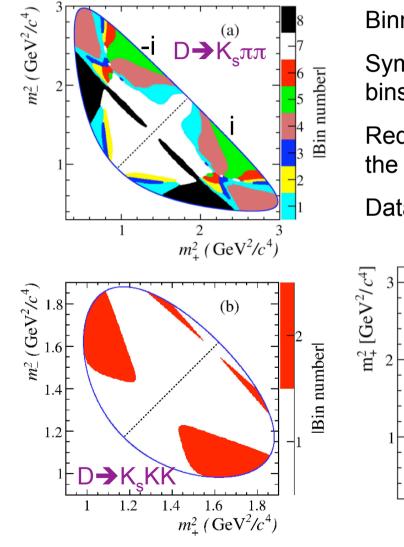
Necessary strong phase information available from dedicated analysis of CLEO-c data.

Well understood systematic uncertainties

Loss of statistical precision (ok if minimal)

Model-dependent: Fit the Dalitz plot

Maximises statistical power

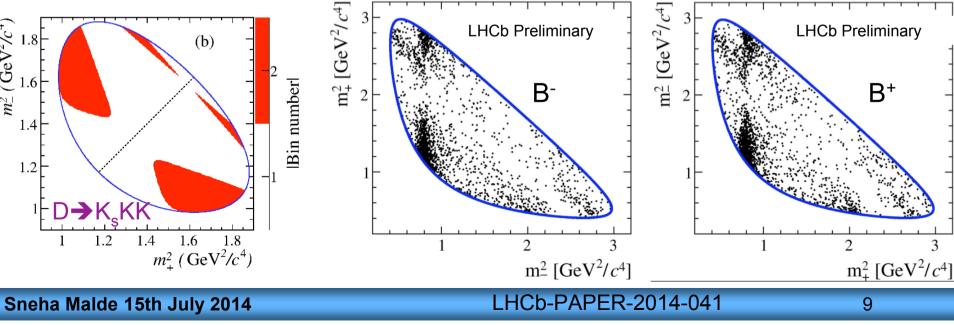

D strong phase variation given by a model

Systematic uncertainties due to this are hard to quantify.

Problematic in the precision era.

Sneha Malde 15th July 2014

Model-independent method



Binning shapes optimised for statistical sensitivity.

Symmetry of Dalitz plot defines positive and negative bins.

Reduces the analysis to a counting experiment in bins of the Dalitz plot

Data from $D \rightarrow K_S KK$ easily added as two additional bins.

Overall strategy

To determine γ : Count the number of observed events in a region of the Dalitz plot.

$$N_{i}^{\pm} = h \left(K_{\pm i} + r_{B}^{2} K_{\mp i} + 2\sqrt{K_{i} K_{-i}} \left[x_{\pm} c_{i} \pm y_{\pm} s_{i} \right] \right)$$

D from B[±] events in
bin *i* of Dalitz plot
Fraction of events in bin
for pure D⁰ sample with
the efficiency profile of
signal

$$X_{\pm} = r_{B} \cos(\delta_{B} \pm \gamma)$$

$$y_{\pm} = r_{B} \sin(\delta_{B} \pm \gamma)$$

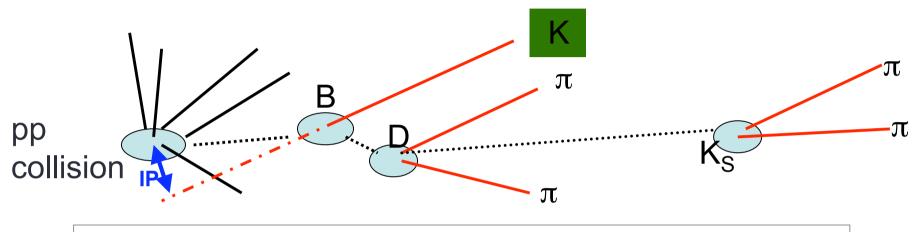
 c_{i} and s_{i} are inputs from CLEO - the are measurements of the cosine and sign of the average strong phase difference

K_i are inputs from other LHCb decays - use $B^0 \rightarrow D^{*+}\mu^-\nu$, $D^{*+} \rightarrow D^0\pi^+$

Charge of the π tags the D⁰ flavour.

Simultaneous mass fit to candidates in all bins to extract best x,y

Combined measurement of 3 fb⁻¹ data


Supersedes the previous 1 fb⁻¹ measurement or the (1+2)fb⁻¹ preliminary result

Sneha Malde 15th July 2014

LHCb-PAPER-2014-041

10

Selecting events based on topology

Separate the topology of interest from random combinations

Useful variables include:

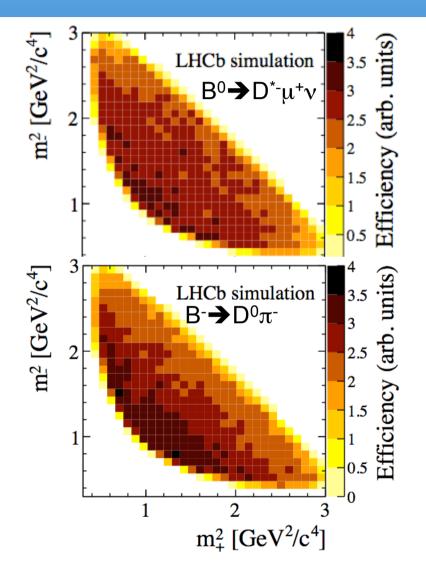
Impact parameters

Flight distances. (B travels a ~cm, K_s many cm)

Vertex quality

Particle ID

Specific vetos against particular backgrounds


All analyses shown here employ similar strategies

Sneha Malde 15th July 2014

LHCb-PAPER-2014-041

11

Accounting for the efficiency

B→D^{*}µv best choice for control mode to determine K_i

D decay is flavour tagged. Similar efficiency profile to the signal channel. High purity

Small differences between $B \rightarrow Dh$ and $B \rightarrow D^* \mu \nu$ efficiencies observed in MC

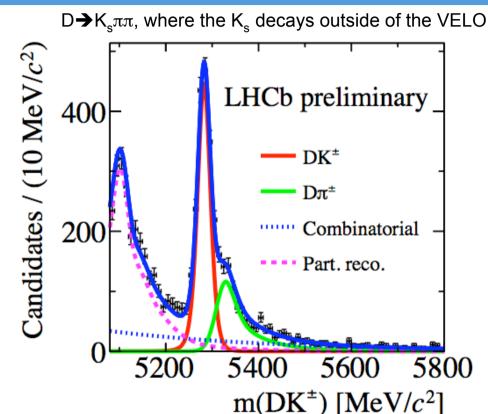
Previously used $B \rightarrow D\pi$, but CPV exists in this decay \rightarrow large systematic uncertainties

To determine correct K_i

Determine bin yields of $B \rightarrow D^* \mu v$

Modify them with correction factor derived from MC

Invariant mass distribution

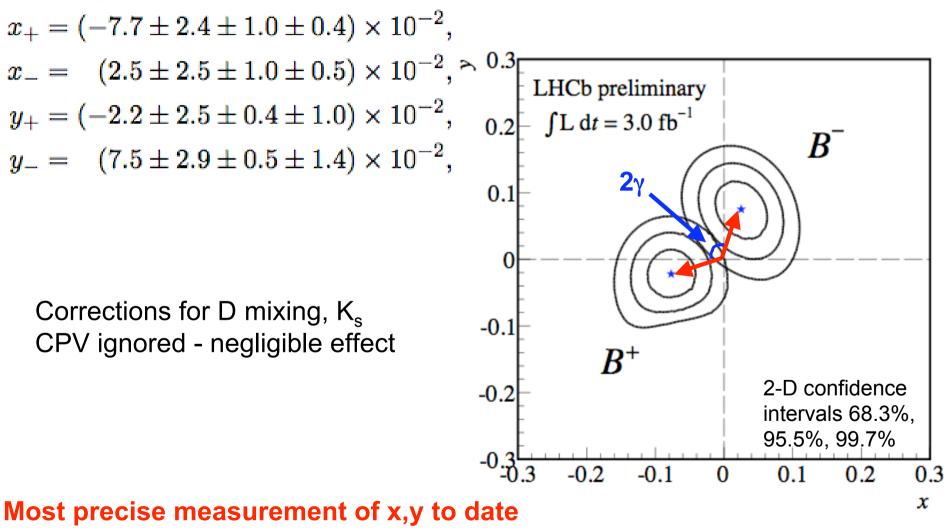

First fit mass distribution combining all Dalitz Plot bins

Split data by D decay channel and $\rm K_{s}$ decay position

In total across all categories ~2600 signal candidates

Purity ~ 75% in signal region

Second fit uses fixed mass model PDFs to determine yields in each bin simultaneously and determine best x, y values


$$N_{+i}^{+} = n_{B^{+}} [K_{-i} + (x_{+}^{2} + y_{+}^{2})K_{+i} + 2\sqrt{K_{+i}K_{-i}}(x_{+}c_{+i} - y_{+}s_{+i})]$$

$$x_{\pm} = r_{B}\cos(\delta_{B} \pm \gamma), y_{\pm} = r_{B}\sin(\delta_{B} \pm \gamma)$$

Sneha Malde 15th July 2014

LHCb-PAPER-2014-041

Results on CP parameters

Preliminary

Sneha Malde 15th July 2014

LHCb-PAPER-2014-041

14

Comparing to 1 fb⁻¹ result

Statistical uncertainties reduce due to increased data sample

	X ₊	X_	У ₊	У _
2011	0.045	0.043	0.037	0.052
2013	0.024	0.025	0.025	0.029

Experimental systematic uncertainty reduced due to change in control mode. MC efficiency correction dominates.

	X ₊	X	У +	У_
2011	0.018	0.015	0.008	0.008
2013	0.010	0.010	0.004	0.005

Strong phase systematic reduces due to increased sample size

	X ₊	X_	У+	у _
2011	0.014	0.006	0.030	0.023
2013	0.004	0.005	0.010	0.014

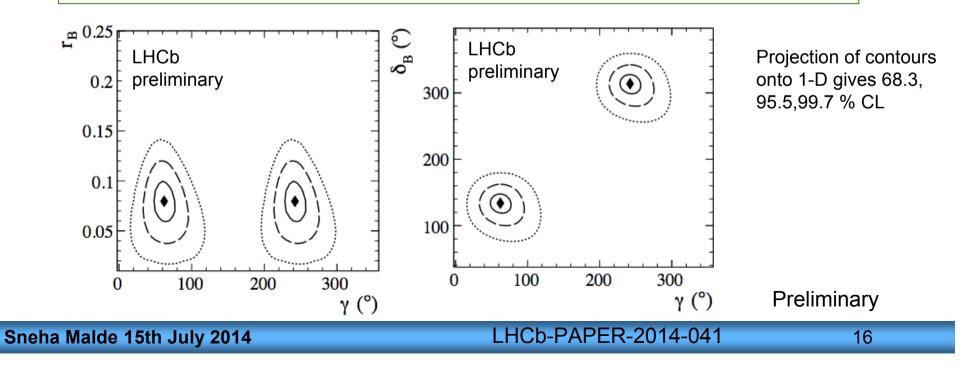
$$\begin{aligned} x_+ &= (-7.7 \pm 2.4 \pm 1.0 \pm 0.4) \times 10^{-2}, \\ x_- &= (2.5 \pm 2.5 \pm 1.0 \pm 0.5) \times 10^{-2}, \\ y_+ &= (-2.2 \pm 2.5 \pm 0.4 \pm 1.0) \times 10^{-2}, \\ y_- &= (7.5 \pm 2.9 \pm 0.5 \pm 1.4) \times 10^{-2}, \end{aligned}$$

Most precise measurement of x,y to date

Sneha Malde 15th July 2014 PLB 718 43 (2012) LHCb-PAPER-2014-041

Physics parameters of interest

Determine (stat+syst) confidence intervals for γ , r_B, δ _B

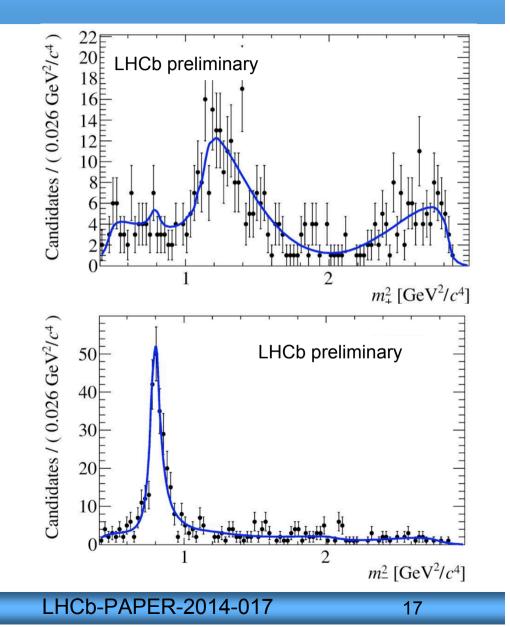

Two-fold ambiguity

1fb⁻¹ result: $\gamma = 44^{+43}_{-38}$

Improvement threefold - more data, lower systematic uncertainties and higher central $\rm r_{\rm B}$ value

$$\gamma = (62^{+15}_{-14})^{\circ}$$
$$r_B = (8.0^{+1.9}_{-2.1}) \times 10^{-2}$$
$$\delta_B = (134^{+14}_{-15})^{\circ}$$

Precision matches that of either B factory γ combinations


Model-dependent method

D strong phase differences accounted for by using an amplitude model

The latest BaBar amplitude model is chosen.

Only consider the $K_{S}\pi\pi$ decay (1 fb⁻¹)

Efficiency on the Dalitz Plot determined from $B \rightarrow D\pi$ assuming no CPV

 $(10^{6})^{-10}$

Sneha Malde 15th July 2014

Model-dependent results

Preliminary

$$x_{-} = +0.027 \pm 0.044_{-0.008}^{+0.010} \pm 0.001,$$

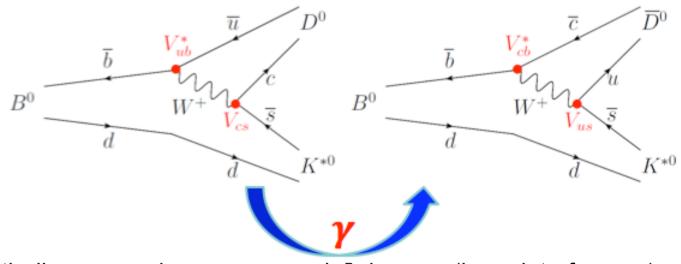
$$y_{-} = +0.013 \pm 0.048_{-0.007}^{+0.009} \pm 0.003,$$

$$x_{+} = -0.084 \pm 0.045 \pm 0.009 \pm 0.005,$$

$$y_{+} = -0.032 \pm 0.048_{-0.009}^{+0.010} \pm 0.008,$$

x, y measurement consistent with the 1fb⁻¹ MI result

$$\gamma = 84_{-42}^{+49^{\circ}}$$


$$\gamma = 84_{-42}^{+49^{\circ}}$$

Sneha Malde 15th July 2014

LHCb-PAPER-2014-017

Final uncertainty is due to

$B^0 \rightarrow DK^{0*}$

Both diagrams colour suppressed \rightarrow large r_B (large interference)

Initial B⁰ flavour tagged by the charge of the kaon in the $K^{0*} \rightarrow K\pi$

(no need for time-dependent analysis)

Interference requires same D final state

So far two-body D decay modes considered with 3 fb⁻¹

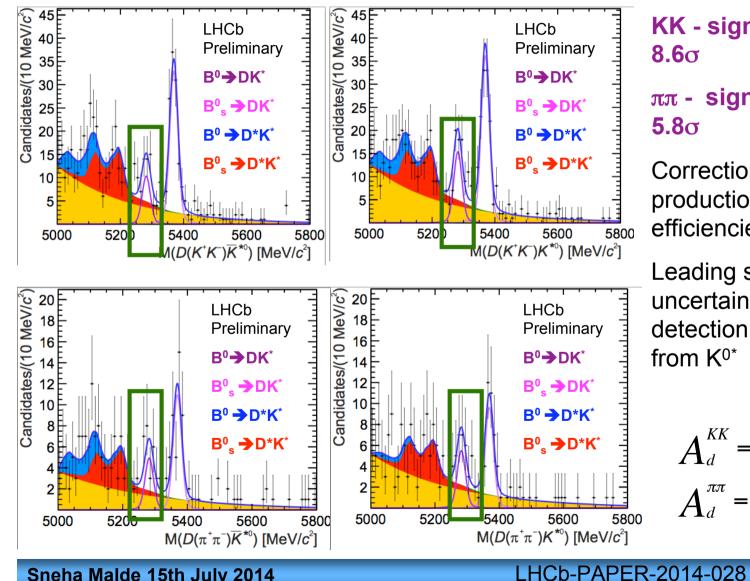
 γ common to all analyses; here different B decay means different r_B and δ_B

B⁰→**D**K⁰* observables

Can construct a number of observables that have sensitivity to γ

Asymmetries in D \rightarrow CP eigenstates (KK , $\pi\pi$ easily accessible at LHCb)

$$\mathcal{A}_{d}^{hh} \equiv \frac{\Gamma(\overline{B}{}^{0} \to D(h^{+}h^{-})\overline{K}^{*0}) - \Gamma(B^{0} \to D(h^{+}h^{-})K^{*0})}{\Gamma(\overline{B}{}^{0} \to D(h^{+}h^{-})\overline{K}^{*0}) + \Gamma(B^{0} \to D(h^{+}h^{-})K^{*0})} = \frac{2r_{B}\kappa\sin\delta_{B}\sin\gamma}{1 + r_{B}^{2} + 2r_{B}\kappa\cos\delta_{K}\cos\gamma}.$$


Can also consider the CF decay $D^0 \rightarrow K^-\pi^+$ and the DCS decay $D^0 \rightarrow K^+\pi^-$

$$\begin{aligned} \mathcal{R}_{d}^{+} &\equiv \frac{\Gamma(B^{0} \to D(\pi^{+}K^{-})K^{*0})}{\Gamma(B^{0} \to D(K^{+}\pi^{-})K^{*0})} = \frac{r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{L}\kappa\cos(\delta_{B} + \delta_{D} + \gamma)}{1 + r_{B}^{2}r_{D}^{2} + 2r_{B}r_{D}\kappa\cos(\delta_{B} - \delta_{D} + \gamma)},\\ \mathcal{R}_{d}^{-} &\equiv \frac{\Gamma(\overline{B}^{0} \to D(\pi^{-}K^{+})\overline{K}^{*0})}{\Gamma(\overline{B}^{0} \to D(K^{-}\pi^{+})\overline{K}^{*0})} = \frac{r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{L}\kappa\cos(\delta_{B} + \delta_{D} - \gamma)}{1 + r_{B}^{2}r_{D}^{2} + 2r_{B}r_{D}\kappa\cos(\delta_{B} - \delta_{D} - \gamma)}. \end{aligned}$$

Other observables include asymmetry in B⁰ and B⁰ in the CF decay, and ratio of CP even to the CF decay.

Relations involve κ , the coherence factor to take into account non-resonant yield in the K^{0*} region

B⁰→DK^{0*} D→KK, $\pi\pi$

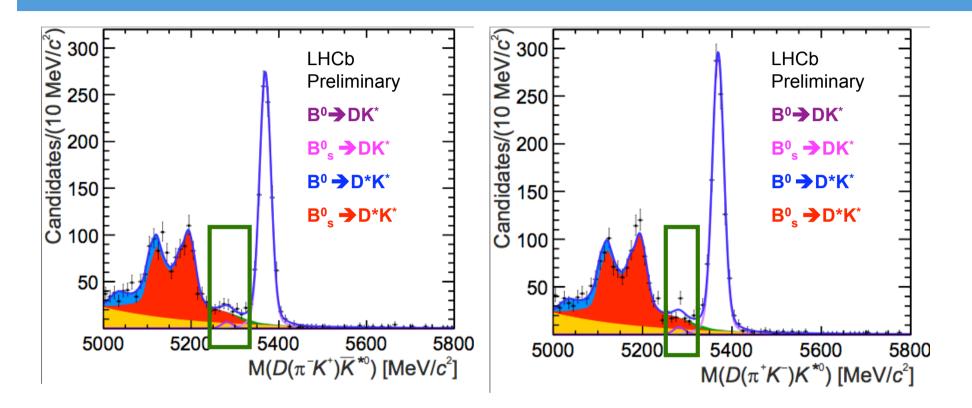
KK - significance of signal:

 $\pi\pi$ - significance of signal:

Corrections applied for production and selection efficiencies.

Leading systematic uncertainties from charge detection asymmetry in the K

 $A_d^{KK} = -0.198_{-0.145-0.020}^{+0.144+0.019}$



Preliminary

Sneha Malde 15th July 2014

21

$B^0 \rightarrow DK^{0*}, D \rightarrow \pi K$

Combined signal significance is 2.9σ .

 $R_d^+ = 0.057_{-0.027-0.012}^{+0.029+0.009}$

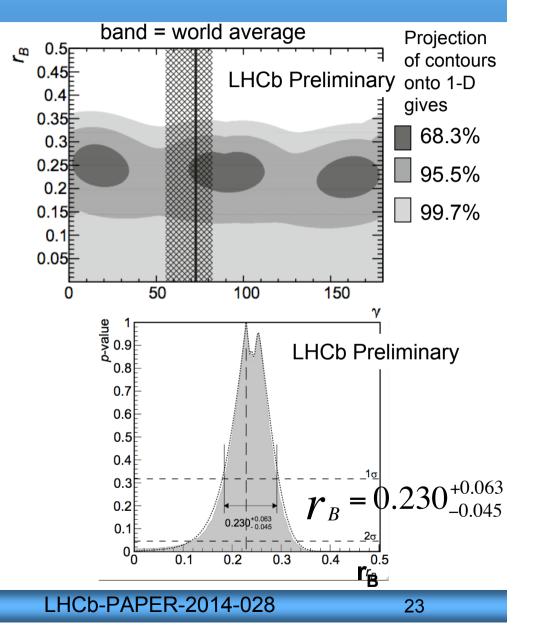
$$R_d^- = 0.056^{+0.032+0.009}_{-0.030-0.012}$$

Preliminary

Constraints on physics parameters

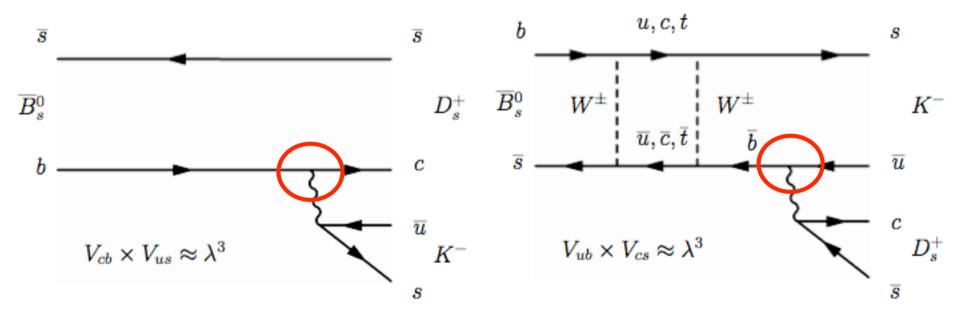
Coherence factor κ determined from simulation of a realistic model of the resonance content of B⁰ \rightarrow DK π

 κ = 0.95±0.03


Measurements of all observables combined to determine r_B , $\delta_B \gamma$

Ambiguities from the trigonometric relations

Some constraints can be set at the 68.3% CL


 r_B value larger than that for $B \rightarrow DK$

Promising decay to study further

Measure CP violation in the interference of mixing and decay

Both decay amplitudes $\sim \lambda^3 \rightarrow$ Large interference

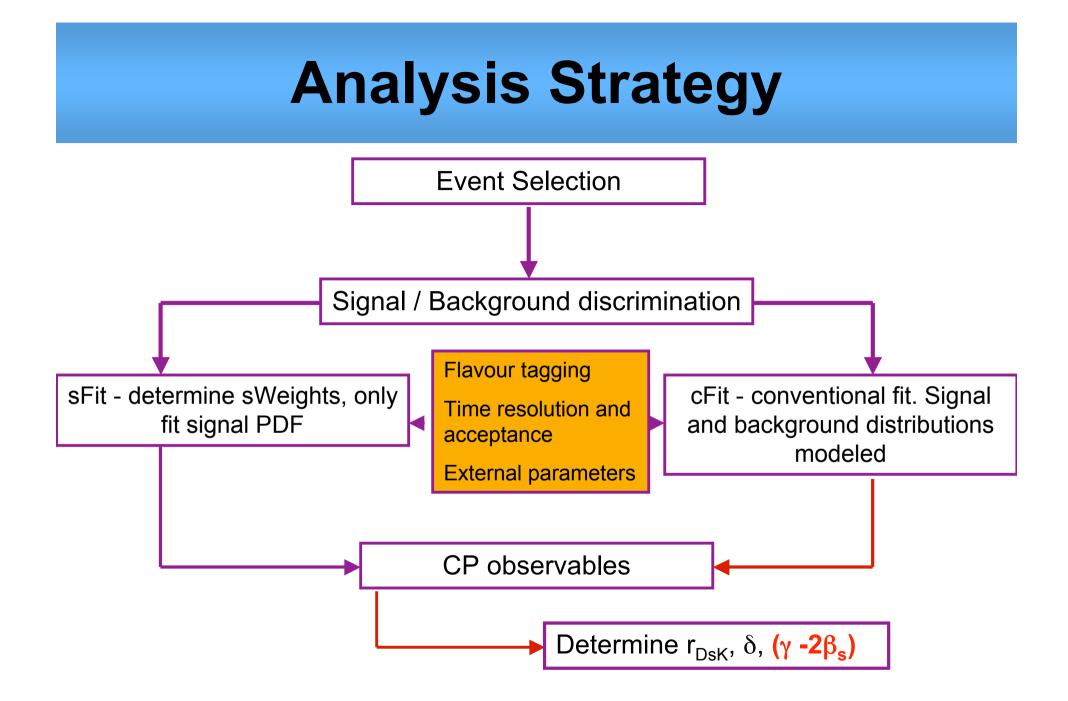
Tree level process like other analyses shown

Time-dependence increases the complexity of the analysis

CP Observables

$$\begin{split} \frac{\mathrm{d}\Gamma_{B_s^0 \to f}(t)}{\mathrm{d}t} &= \frac{1}{2} |A_f|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right. \\ &+ C_f \cos\left(\Delta m_s t\right) - S_f \sin\left(\Delta m_s t\right) \right], \\ \frac{\mathrm{d}\Gamma_{\overline{B}_s^0 \to f}(t)}{\mathrm{d}t} &= \frac{1}{2} |A_f|^2 \left| \frac{p}{q} \right|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right] \\ &- C_f \cos\left(\Delta m_s t\right) + S_f \sin\left(\Delta m_s t\right) \right], \end{split}$$

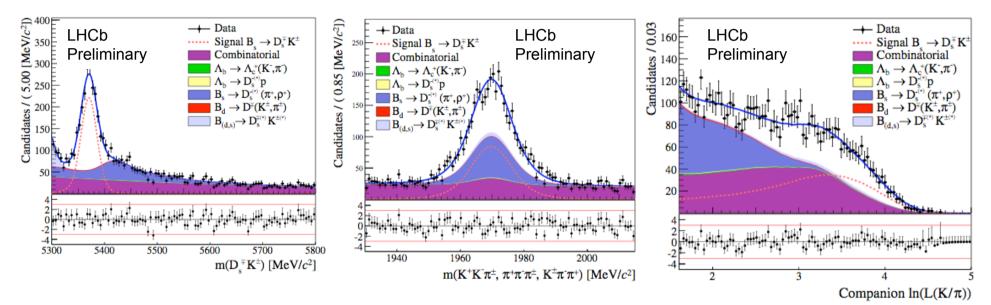
$$\begin{aligned} A_f \text{ is the decay amplitude for } B_S \text{ to decay to final state f} \end{aligned}$$


$$C_{f} = \frac{1 - r_{D_{sK}}^{2}}{1 + r_{D_{sK}}^{2}},$$

$$A_{f}^{\Delta\Gamma} = \frac{-2r_{D_{sK}}\cos(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{sK}}^{2}}, \quad A_{\bar{f}}^{\Delta\Gamma} = \frac{-2r_{D_{sK}}\cos(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{sK}}^{2}}, \quad \beta_{s} - \text{mixing}$$

$$S_{f} = \frac{2r_{D_{sK}}\sin(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{sK}}^{2}}, \quad S_{\bar{f}} = \frac{-2r_{D_{sK}}\sin(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{sK}}^{2}}, \quad \beta_{s} - \text{mixing}$$

Sneha Malde 15th July 2014


LHCb-PAPER-2014-038

Sneha Malde 15th July 2014

LHCb-PAPER-2014-038

Signal/Background discrimination

Three D_s^- decays considered: K⁺K⁺ π^- , $\pi^-\pi^+\pi^-$, K⁻ $\pi^+\pi^-$? Plots show all D_s states combined Simultaneous fit in 3 variables: M(B_s), M(D_s) and PID variable on the Kaon from the B Allows for signal/background discrimination, and for determination of signal weights

Other Inputs

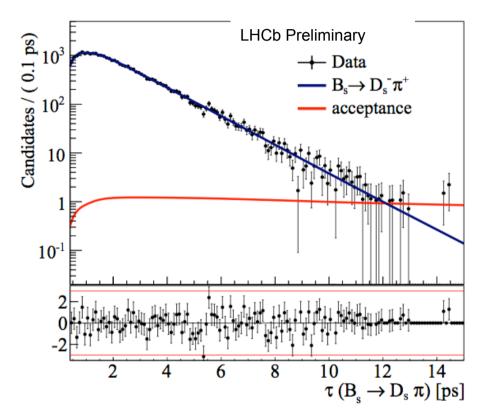
Flavour tagging:

Combination of SS and OS taggers

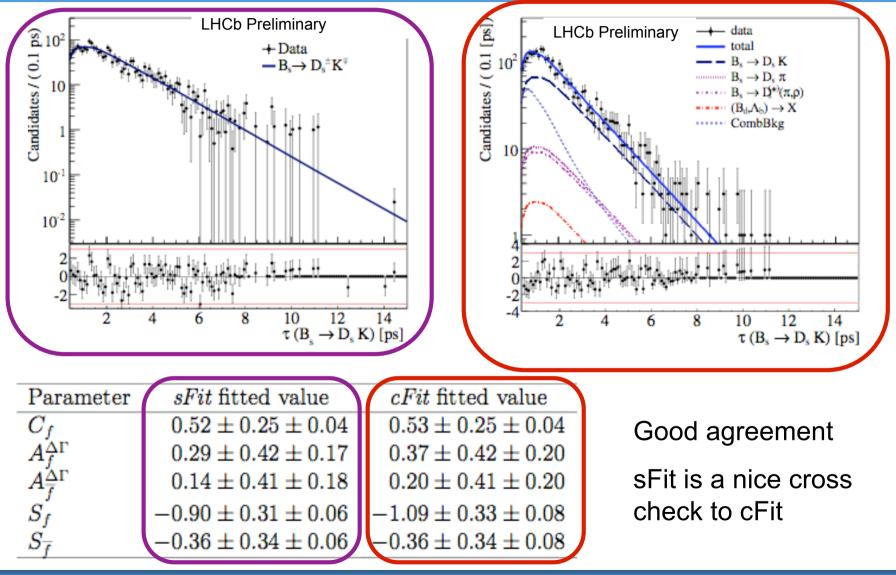
Efficiency of tagging an event = 67.5%

Effective tagging power = 5.07%

Decay time acceptance:


 $B_s \rightarrow D_s \pi$ with additional corrections from simulation

Decay time resolution:


Use the per-event error. Average resolution is 47 fs

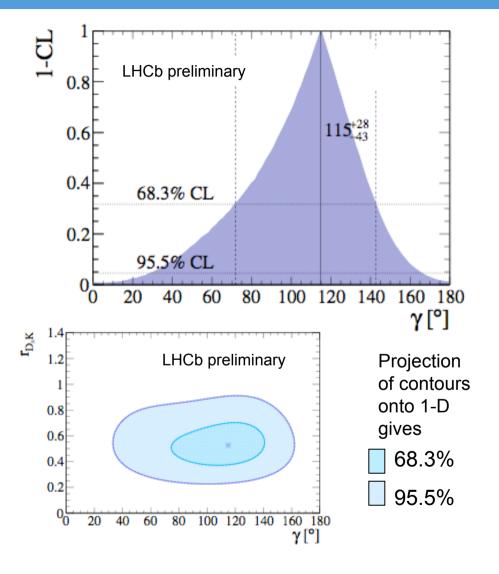
External Inputs:

 $\Gamma_{s},\,\Delta\Gamma_{s},\,\Gamma_{d},\,\Gamma_{\Lambda b}\,\Delta m_{s}$ all fixed from other measurements.

Decay time fit

Sneha Malde 15th July 2014

LHCb-PAPER-2014-038


Measurement of angle y

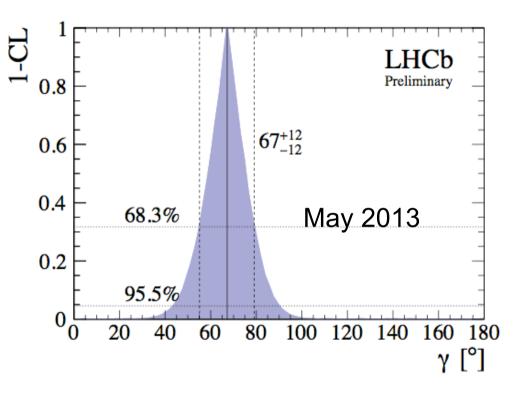
 γ determination based on cFit results Statistical and systematic uncertainties + correlations taken into account First measurement from B_s→D_sK Only 1fb⁻¹ - more available

$$\gamma = (115^{+28}_{-43})^{\circ}$$
$$r_{D_SK} = (0.53^{+0.17}_{-0.16})$$
$$\delta_{D_SK} = (3^{+19}_{-20})^{\circ}$$

Preliminary

Sneha Malde 15th July 2014

Summary and outlook


Many tree level $\boldsymbol{\gamma}$ measurements being pursued

Demonstrated that the complex analyses like $B_s \rightarrow D_s K$ and GGSZ can be done at LHCb

 $B^0 \rightarrow DK^{0^*}$, and $B_s \rightarrow D_s K$ will add to the combination and continue to drive the direct uncertainty down

Updated 3fb⁻¹ GGSZ measurement has better overall precision than (1+2) fb⁻¹ already included in the combination and will also continue to improve precision.

Other B \rightarrow DK, B \rightarrow DX analyses also pursued, either updating 1fb⁻¹ \rightarrow 3fb⁻¹ or new D decays.

Precision on direct γ measurements from LHCb will continue to reduce