Very rare B decays at LHCb

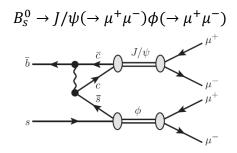
Matteo Rama on behalf of the LHCb Collaboration

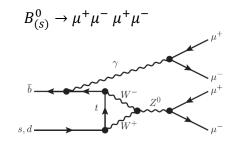
Laboratori Nazionali di Frascati

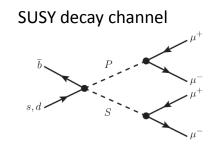
Outline

- Search for $B^0_{(s)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ decays
- Search for $B^0_{(s)} \rightarrow e^{\pm} \mu^{\mp}$ decays
- $B^0_{(s)} \rightarrow \mu\mu$ decays

Search for $B^0_{(s)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ decays


In Standard Model:


- Dominated by $B_s^0 \to J/\psi(\to \mu^+\mu^-)\phi(\to \mu^+\mu^-)$
- BF= $(2.3 \pm 0.9) \times 10^{-8}$
- Main SM nonresonant contribution $B^0_{(s)} \rightarrow \mu^+ \mu^- \gamma (\rightarrow \mu^+ \mu^-)$, BF < 10^{-10}


Beyond SM:

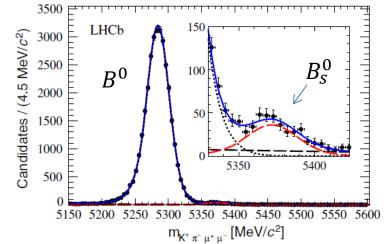
• BF can be significantly enhanced, for example in MSSM: $B \rightarrow S(\rightarrow \mu^+\mu^-)P(\rightarrow \mu^+\mu^-)$, S and P sgoldstino particles [PRD85,077701 (2012)]

Interest also related to the evidence of $\Sigma^+ \rightarrow p\mu^+\mu^-$ by the HyperCP Collaboration consistent with existence of $P \rightarrow \mu^+\mu^-$ with M(P)=214.3 \pm 0.5 MeV [PRL94, 021801 (2005)]

Search for $B^0_{(s)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ decays

Signal selection

- Dataset: 1 fb⁻¹ , $\sqrt{s} = 7$ TeV
- Tight muon PID criteria $(\epsilon(\mu) = 78.5\%, \epsilon(\pi \rightarrow \mu) = 1.4\%))$
- 4 muons originating from single vertex and far from the primary vertex
- J/ψ and ϕ mass vetoes to remove the dominant $B_s \rightarrow J/\psi \phi$

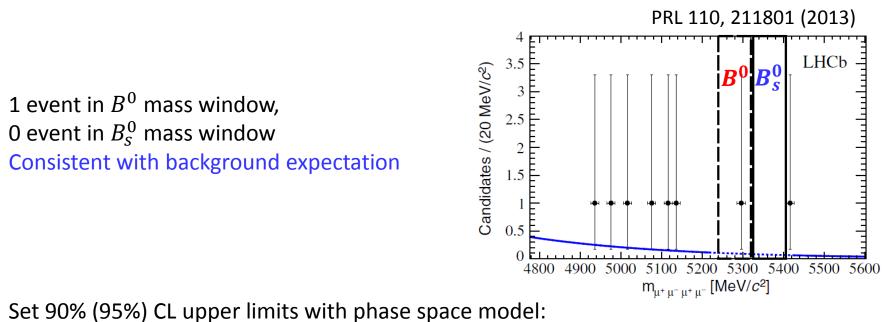

BF measurement

• $B^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-) K^{*0}(\rightarrow K^+\pi^-)$ used as normalization ($K\pi$ S-wave excluded)

•
$$\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^- \mu^+ \mu^-) = \mathcal{B}(B^0 \to J/\psi K^{*0})$$

 $\times \frac{\epsilon_{B^0 \to J/\psi K^{*0}}}{\epsilon_{B^0_{(s)} \to \mu^+ \mu^- \mu^+ \mu^-}} \frac{N_{B^0_{(s)} \to \mu^+ \mu^- \mu^+ \mu^-}}{N_{B^0 \to J/\psi K^{*0}}} \left(\frac{f_{d(s)}}{f_d}\right)^{-1} \kappa$

normalization mode $B^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-) K^{*0}(\rightarrow K^+\pi^-)$


PRL 110, 211801 (2013)

 $\begin{aligned} \epsilon_{B^0 \to \mu^+ \mu^- \mu^+ \mu^-} &= 0.349 \pm 0.003 \% \\ \epsilon_{B_s^0 \to \mu^+ \mu^- \mu^+ \mu^-} &= 0.359 \pm 0.003 \% \\ \epsilon_{B^0 \to J/\psi K^{*0}} &= 0.273 \pm 0.003 \% \\ \kappa &= 1.09 \pm 0.09 \text{ correction for the S-wave exclusion} \\ f_s/f_d &= 0.256 \pm 0.020 \ B^0/B_s^0 \\ \text{production fraction} \end{aligned}$

[JHEP 1304 (2013) 001, LHCb-CONF-2013-011]

Search for $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}\mu^{+}\mu^{-}$ decays

$$BF(B_s^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 1.2(1.6) \times 10^{-8}$$
$$BF(B^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 5.3(6.6) \times 10^{-9}$$

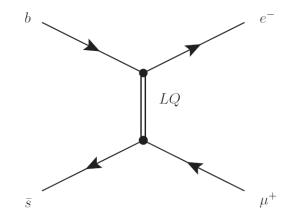
Set 90% (95%) CL upper limits for MSSM model with $m_{P(S)} = 214.3$ MeV (2.5 GeV) ^(*): $BF(B_S^0 \rightarrow SP \rightarrow 4\mu) < 1.2(1.6) \times 10^{-8}$ $BF(B^0 \rightarrow SP \rightarrow 4\mu) < 5.1(6.3) \times 10^{-9}$

(*) compared to phase space model: tiny change of reconstruction efficiency due to different **p** distribution of muons

Search for $B_{(s)}^0 \rightarrow e^{\pm} \mu^{\mp}$ decays

Lepton flavor violating process forbidden in SM

Decay allowed in several NP scenarios including models with heavy singlet Dirac neutrinos, SUSY and the Pati-Salam model


The Pati-Salam model predicts a new interaction to mediate transitions between leptons and quarks via exchange of spin-1 gauge bosons (Pati-Salam leptoquarks, LQ) [PRD 10 (1974) 275]

Direct searches for pair production of 1^{st} and 2^{nd} generation scalar LQ at ATLAS and CMS exclude LQ mass ranges $\lesssim 1~\text{TeV}$

Previous branching fraction limits from CDF: $BF(B_s^0 \to e^{\pm}\mu^{\mp}) < 2.0(2.6) \ 10^{-7} @ 90(95)\% \text{ CL}$ $BF(B^0 \to e^{\pm}\mu^{\mp}) < 6.4(7.9) \ 10^{-8} @ 90(95)\% \text{ CL}$

[PRL 102,201801(2009)]

LQ coupling to leptons and quarks of different generations

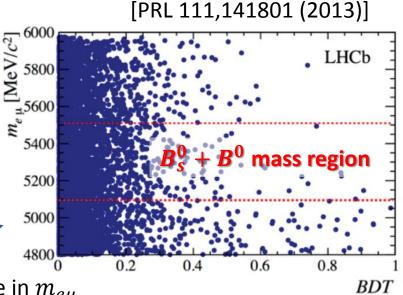
M. Rama - Beauty 2014

Search for $B_{(s)}^0 \rightarrow e^{\pm} \mu^{\mp}$ decays

Signal selection

• Dataset: 1 fb⁻¹, $\sqrt{s} = 7$ TeV $B^0 \rightarrow K^+\pi^-$ used as normalization channel Main background from $b\overline{b} \rightarrow e^{\pm}\mu^{\mp}X$ decays Final signal/background discrimination through BDT (multivariate classifier) and $m_{e\mu}$

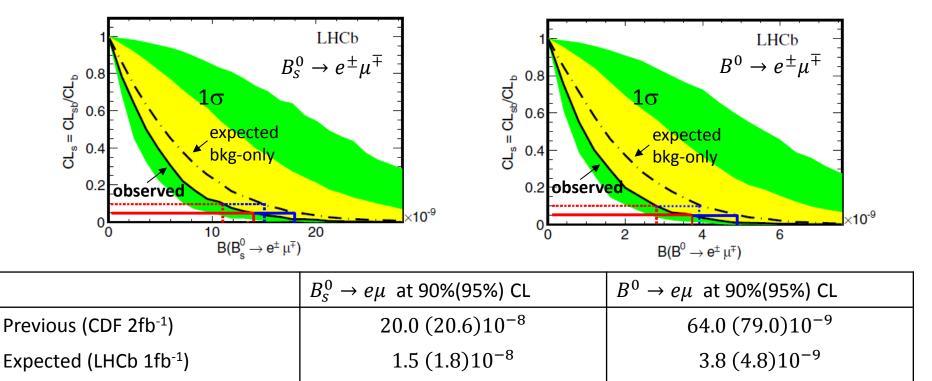
signal: flat in BDT, peaks at $m_{B_{(s)}^0}$ in $m_{e\mu}$ 4800 background: peaks at 0 in BDT, exponential shape in $m_{e\mu}$


Result:

Events in signal region consistent with the expected background

$$\mathcal{B}(B^0_{(s)} \to e^{\pm} \mu^{\mp}) = \frac{\mathcal{B}_{\text{norm}} \epsilon_{\text{norm}} f_d}{N_{\text{norm}} \epsilon_{\text{sig}} f_{d(s)}} \times N_{B^0_{(s)} \to e^{\pm} \mu^{\mp}}$$

norm = $B^0 \rightarrow K^+\pi^$ $f_s/f_d = 0.256 \pm 0.020 \ B^0/B_s^0$ production fraction


Upper limit on $B(B_{(s)}^0 \rightarrow e^{\pm}\mu^{\mp})$ evaluated with the CLs method

Search for $B_{(s)}^0 \rightarrow e^{\pm} \mu^{\mp}$ decays

[PRL 111,141801 (2013)]

 $2.8(3.7)10^{-9}$

Observed (LHCb 1fb⁻¹)

Lower limits on Pati-Salam leptoquark masses [PRD50, 6843 (1994)]

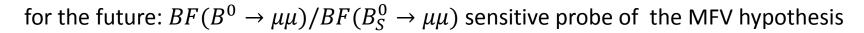
LHCbCDF $m_{LQ}(B_s^0 \to e^{\pm}\mu^{\mp}) > 107 \text{ TeV @90\% CL}$ $m_{LQ}(B_s^0 \to e^{\pm}\mu^{\mp}) > 47.8 \text{ TeV @90\% CL}$ $m_{LQ}(B^0 \to e^{\pm}\mu^{\mp}) > 135 \text{ TeV @90\% CL}$ $m_{LQ}(B^0 \to e^{\pm}\mu^{\mp}) > 59.3 \text{ TeV @90\% CL}$

 $1.1(1.4)10^{-8}$

SM prediction

FCNC processes, additional helicity suppression, theoretically clean

 $B_s^0 \to \mu\mu$: (3.65 ± 0.23) 10⁻⁹


$$B^0 \to \mu\mu$$
: (1.06 ± 0.09) 10⁻¹⁰

[A.J. Buras et al, EPJC 72 2172 (2012), Bobeth et al, PRL112, 101801 (2014)]

beyond the SM

The branching fraction can be significantly enhanced in a number of NP models. SUSY, 2HDM, SM4, ...

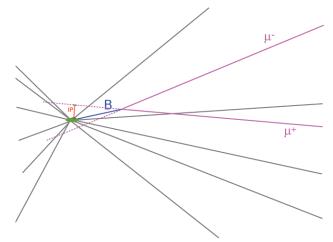
Especially sensitive to contributions in the scalar/pseudoscalar sector

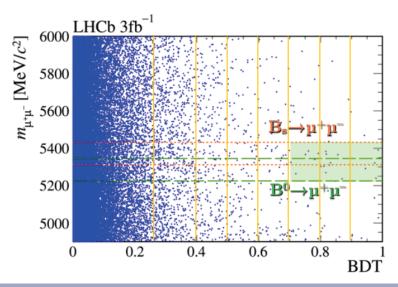
υ,

SUSY

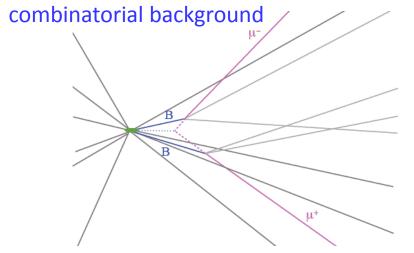
 $H^{o}_{,A}$

Analysis strategy

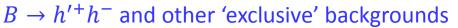

Loose selection

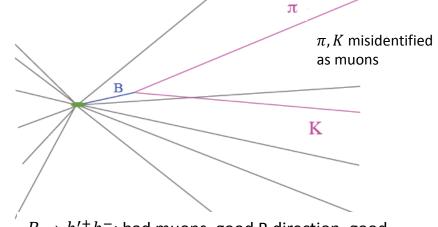

[PRL111, 101805 (2013)]

- Dataset: 3 fb⁻¹ (1.0 at $\sqrt{s} = 7$ TeV, 2.0 at $\sqrt{s} = 8$ TeV)
- 2 muons from vertex displaced from the IP
- Additional requirements on tracks and B candidate
- *m*(μμ) in [4900,6000] MeV


Signal extraction in $m(\mu\mu)$ vs BDT plane

- BDT: multivariate classifier based on 12 kinematic and 'geometric' variables
- Signal: flat in BDT, peaks at $m_{B^0_{
 m S}}$ or m_{B^0}
- Background: strongly peaking at 0 in BDT, exponential or peaking in $m(\mu\mu)$
- Extract $B_{(s)}^0 \rightarrow \mu\mu$ yields from fit of $m(\mu\mu)$ in 8 BDT subregions




 $\rightarrow \mu\mu$ backgrounds

good muons, bad B direction, bad isolation, random mass, very high yield (10⁸ x signal)

- Main background from $b\overline{b} \rightarrow \mu^+\mu^- X$ (μ^+, μ^- from different *B* decays)
- $B \rightarrow h'^+h^ (h = \pi, K)$: peak in $m(\mu\mu)$ and overlap the $B^0_{(s)}$ mass region
- Exclusive backgrounds included as separate components in $m(\mu\mu)$ fit except for $\Lambda_b^0 \rightarrow p\mu^- \bar{\nu}_\mu$

 $B \rightarrow h'^+h^-$: bad muons, good B direction, good isolation, peaking mass, yield 10^4 x signal

Expected yield of main exclusive backgrounds in 3 fb⁻¹ with $m(\mu\mu)$ in [4900,6000] MeV

	Yield in full BDT range	Fraction with BDT > 0.7 [%]
$B^0_{(s)} \rightarrow h^+ h'^-$	15 ± 1	28
$egin{array}{llllllllllllllllllllllllllllllllllll$	115 ± 6	15
$B_s^0 \rightarrow K^- \mu^+ \nu_{\mu}$	10 ± 4	21
$B^{0(+)} \to \pi^{0(+)} \mu^+ \mu^-$	28 ± 8	15
$\Lambda_b^0 \to p \mu^- \bar{\nu}_\mu$	70 ± 30	11

Calibration and normalization

10-1

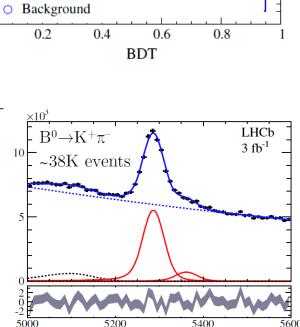
 10^{-3}

 10^{-4}

LHCb

Signal

HOd 10⁻²

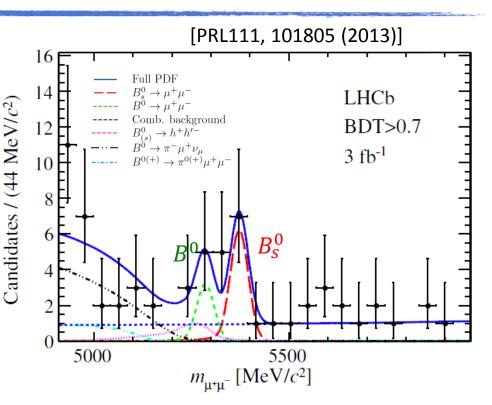

Calibration

- signal BDT shape: calibrated from $B_{(s)} \rightarrow h'^+ h^-$
- signal $m(\mu\mu)$ shape: 'CrystalBall' function, mean from $B_{(s)} \rightarrow h'^+h^-$, resolution extrapolated from charmonium/bottomonium $\rightarrow \mu\mu$ decays

Branching fraction

$$\mathcal{B}(B_{(s)}^{0} \to \mu^{+} \mu^{-}) = \frac{\mathcal{B}_{\text{norm}} \epsilon_{\text{norm}} f_{\text{norm}}}{N_{\text{norm}} \epsilon_{\text{sig}} f_{d(s)}} \times N_{B_{(s)}^{0} \to \mu^{+} \mu^{-}} = \alpha_{(s)} \times N_{B_{(s)}^{0} \to \mu^{+} \mu^{-}}$$

- Normalization channels: $B^+ \rightarrow J/\psi(\rightarrow \mu\mu)K^+$, $B^0 \rightarrow K^+\pi^-$
- $\epsilon_{norm}/\epsilon_{sig}$ from MC and corrected for data/MC diff
- $f_{norm} = f_d; f_s/f_d = 0.259 \pm 0.015$
- $\alpha_{(s)}$ compatible for the two channels and averaged



 $m_{\mathrm{K}\pi} \, \mathrm{[MeV/c^2]}$

 $BF(B_{(S)}^{0} \rightarrow \mu\mu)$

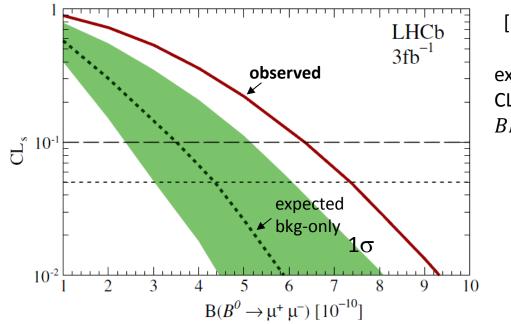
Fit

- Simultaneous unbinned ML fit to $m(\mu\mu)$ in each of the 8 BDT regions
- Free yields: B_s^0 , B^0 and combinatorial background
- Yields of main exclusive backgrounds constrained according to their expected values and uncertainties

Results

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.9^{+1.1}_{-1.0}(\text{stat})^{+0.3}_{-0.1}(\text{syst})) \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.7^{+2.4}_{-2.1}(\text{stat})^{+0.6}_{-0.4}(\text{syst})) \times 10^{-10}$


significance: 4.0 σ

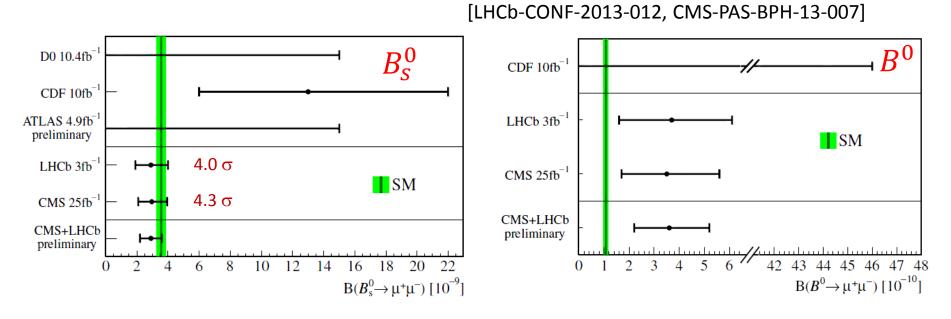
significance: 2.0 σ

In agreement with the SM predictions

M. Rama - Beauty 2014

$B^0 \rightarrow \mu^+ \mu^-$ upper limit

[PRL111, 101805 (2013)]


expected and observed CLs values as a function of $BF(B^0 \rightarrow \mu^+ \mu^-)$

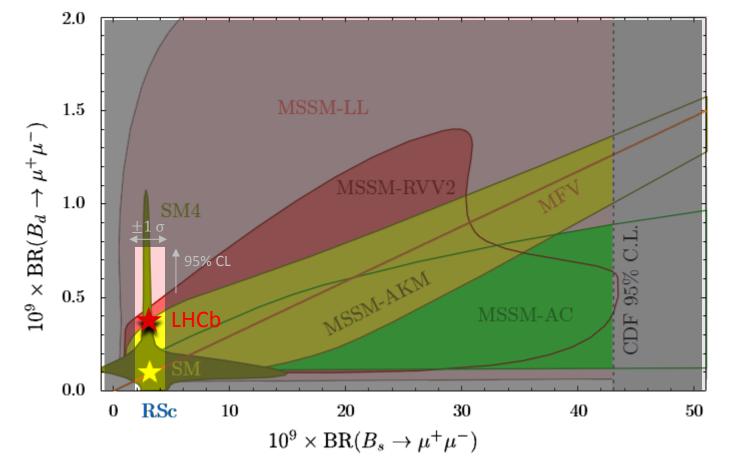
Since no significant excess of $B^0 \rightarrow \mu^+\mu^-$ found

upper limit calculated with the CLs method

	90% C.L.	95% C.L.
Expected bkg Expected bkg + SM Observed	3.5×10^{-10} 4.5×10^{-10} 6.3×10^{-10}	$\begin{array}{c} 4.4 \times 10^{-10} \\ 5.4 \times 10^{-10} \\ 7.4 \times 10^{-10} \end{array}$

LHCb-CMS combination

Simplified combination procedure using asymmetric Gaussian errors

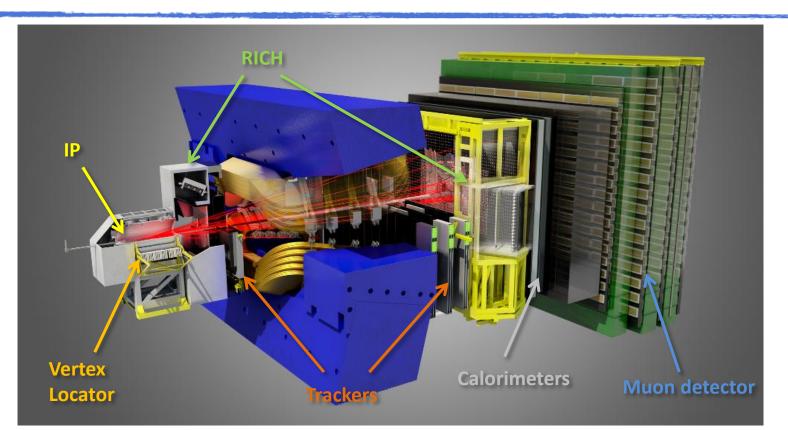

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= (2.9 \pm 0.7) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= (3.6 \,{}^{+1.6}_{-1.4}) \times 10^{-10} \end{split} \text{ consistent with SM}$$

Combined signal significance not evaluated

Rigorous combination from simultaneous fit to LHCb and CMS datasets will be available soon

The impact of a 'negative' result

original plot from D. M. Straub, arxiv:1012.3893



Summary

- First limits on $B^0_{(s)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ decays
- Limits on $B_{(s)}^0 \rightarrow e^{\pm} \mu^{\mp}$ decays improved by factor 20 compared to previous measurement
- Confirmed evidence of $B_s^0 \rightarrow \mu\mu$, no evidence yet for $B^0 \rightarrow \mu\mu$
- All results consistent with SM predictions
- Next update coming soon: LHCb+CMS $B^0_{(s)} \rightarrow \mu^+ \mu^-$ combination

backup

The LHCb detector

Vertex and IP resolution

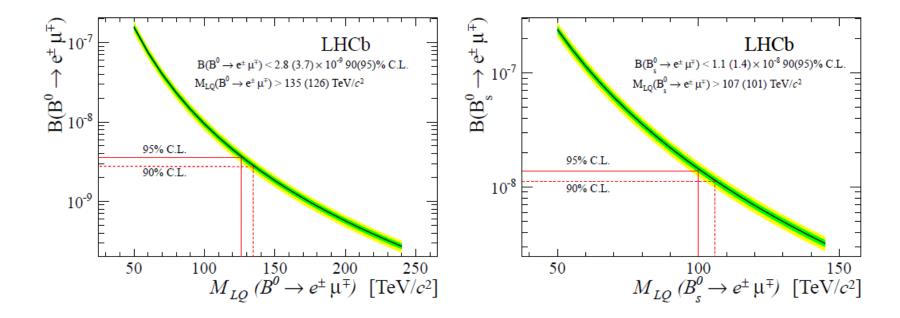
 $\sigma(IP) \approx 24 \ \mu m$ at $p_T = 2 \text{ GeV}$ $\sigma_{BV} \approx 16 \ \mu m$ in x,y

Trigger

 $\epsilon_{\mu} = 90\%$

Momentum resolution

 $\sigma(p)/p = 0.4 - 0.6$ % for p in [0,100] GeV $\sigma(m_B)$ ~26 MeV for two-body decays


Muon identification $\epsilon_{\mu} \sim 98\%$, $\epsilon_{\pi \to \mu} \sim 0.5\%$, $\epsilon_{K \to \mu} \sim 0.3\%$, $\epsilon_{p \to \mu} \sim 0.3\%$

Leptoquark mass limit from $BF(B_{(s)}^0 \rightarrow e^{\pm}\mu^{\mp})$

$$\mathcal{B}(B_{(s)}^{0} \to e^{\pm} \mu^{\mp}) = \pi \frac{\alpha_{S}^{2}(M_{LQ})}{M_{LQ}^{4}} F_{B_{(s)}^{0}}^{2} m_{B_{(s)}^{0}}^{3} R^{2} \frac{\tau_{B_{(s)}^{0}}}{\hbar}$$
$$R = \frac{m_{B_{(s)}^{0}}}{m_{b}} \left(\frac{\alpha_{S}(M_{LQ})}{\alpha_{S}(m_{t})}\right)^{-(4/7)} \left(\frac{\alpha_{S}(m_{t})}{\alpha_{S}(m_{b})}\right)^{-(12/23)}$$

[PRL 111,141801 (2013); PRD50, 6843 (1994]

 $F_{B_{(s)}^0} = \text{decay constants}$

