Rare leptonic \boldsymbol{B}-meson decays

Mikołaj Misiak
(University of Warsaw)

1. Flavour-changing weak interactions and effective lagrangians
2. $B_{s(d)} \rightarrow \ell^{+} \ell^{-}$in the SM
3. Sensitivity to new physics
4. Three-loop QCD corrections
5. Electroweak corrections
6. Predictions and uncertainties
7. Summary
B-meson or Kaon decays occur at low energies, at scales $\mu \ll M_{W}$. We pass from the full theory of electroweak interactions to an effective theory by removing the highenergy degrees of freedom, i.e. integrating out the W-boson and all the other particles with $m \sim M_{W}$.

$$
\mathcal{L}_{\text {(full EW } \times \mathrm{QCD})} \longrightarrow \mathcal{L}_{\text {eff }}=\mathcal{L}_{\text {QED } \times Q \mathrm{CD}}\binom{\text { quarks } \neq t}{\delta x \text { leptons }}+N \sum_{n} C_{n}(\mu) Q_{n}
$$

Q_{n} - local interaction terms (operators), $\quad \boldsymbol{C}_{\boldsymbol{n}}$ - coupling constants (Wilson coefficients)

B-meson or Kaon decays occur at low energies, at scales $\mu \ll M_{W}$.

We pass from the full theory of electroweak interactions to an effective theory by removing the highenergy degrees of freedom, i.e. integrating out the W-boson and all the other particles with $m \sim M_{W}$.

$\boldsymbol{Q}_{\boldsymbol{n}}$ - local interaction terms (operators), $\quad \boldsymbol{C}_{\boldsymbol{n}}$ - coupling constants (Wilson coefficients)
Information on the electroweak-scale physics is encoded in the values of $C_{i}(\mu)$, e.g.,

\qquad

This is a modern version of the Fermi theory for weak interactions. It is "nonrenormalizable" in the traditional sense but actually renormalizable. It is also predictive because all the C_{i} are calculable, and only a finite number of them is necessary at each given order in the (external momenta) $/ M_{W}$ expansion.

Advantages: Resummation of $\left(\alpha_{s} \ln \frac{M_{W}^{2}}{\mu^{2}}\right)^{n}$ using renormalization group, easier account for symmetries.
$B_{s} \rightarrow \mu^{+} \mu^{-}-$the flavour physics highlight of the LHC

- It is a strongly suppressed, loop-generated process in the SM. Its average time-integrated branching ratio (with final-state photon bremsstrahlung included) reads:

$$
\overline{\mathcal{B}}_{\text {SM }}=(3.65 \pm 0.23) \times 10^{-9}
$$

[C. Bobeth, M. Gorbahn, T. Hermann,
MM, E. Stamou and M. Steinhauser,
Phys. Rev. Lett. 112 (2014) 101801]

- It is very sensitive to new physics even in models with Minimal Flavour Violation (MFV). Enhancements by orders of magnitude are possible even when constraints from all the other measurements are taken into account.
- Recently measured branching ratios
$\overline{\mathcal{B}}_{\text {exp }}=\left\{\begin{array}{lll}\left(2.9_{-1.0}^{+1.1}\right) \times 10^{-9}, & \text { LHCb } & \text { [Phys. Rev. Lett. } 111 \text { (2013) 101805] } \\ \left(3.0_{-0.9}^{+1.0}\right) \times 10^{-9}, & \text { CMS } & \text { [Phys. Rev. Lett. } 111 \text { (2013) 101804] }\end{array}\right.$
Combined: $\quad \overline{\mathcal{B}}_{\exp }=(2.9 \pm 0.7) \times 10^{-9}$
[CMS-PAS-BPH-13-007, LHCb-CONF-2013-012]
- ATLAS: $\quad \overline{\mathcal{B}}_{\text {exp }}<1.5 \times 10^{-8} @ 95 \%$ C.L.

Operators (dim 6) that matter for $B_{s} \rightarrow \mu^{+} \mu^{-}$read
$Q_{A}=\left(\bar{b} \gamma^{\alpha} \gamma_{5} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \quad$ - the only relevant one in the SM
$Q_{S}(P)=\left(\overline{\boldsymbol{b}} \gamma_{5} s\right)\left(\bar{\mu}\left(\gamma_{5}\right) \boldsymbol{\mu}\right)=\frac{i\left(\bar{b} \gamma^{\alpha} \gamma_{5} s\right) \partial_{\boldsymbol{\alpha}}\left(\bar{\mu}\left(\gamma_{5}\right) \boldsymbol{\mu}\right)}{\boldsymbol{m}_{\boldsymbol{b}}+\boldsymbol{m}_{\boldsymbol{s}}}+\underset{\substack{\text { vanishing } \\ \text { by EOM }}}{\sim / \sim}$

Operators (dim 6) that matter for $B_{s} \rightarrow \mu^{+} \mu^{-}$read

$Q_{A}=\left(\bar{b} \gamma^{\alpha} \gamma_{5} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right)$ - the only relevant one in the SM
$Q_{S(P)}=\left(\bar{b} \gamma_{5} s\right)\left(\bar{\mu}\left(\gamma_{5}\right) \mu\right)=\frac{i\left(\bar{b} \gamma^{\alpha} \gamma_{5} s\right) \partial_{\alpha}\left(\bar{\mu}\left(\gamma_{5}\right) \mu\right)}{m_{b}+m_{s}}$
$+\underset{\substack{\text { vanishing } \\ \text { by EOM }}}{\sqrt{H}}+$
T
total derivative

Necessary non-perturbative input:

$$
\langle 0| \bar{b} \gamma^{\alpha} \gamma_{5} s\left|B_{s}(p)\right\rangle=i p^{\alpha} f_{B_{s}}
$$

Recent lattice determinations of the B_{s}-meson decay constant:

$$
f_{B_{s}}=\left\{\begin{array}{lll}
225.0(4.0) \mathrm{MeV}, & \text { HPQCD (r), } & \text { arXiv:1110.4510 } \\
224.0(5.0) \mathrm{MeV}, & \text { HPQCD (nr), } & \text { arXiv:1302.2644 } \\
234.0(6.0) \mathrm{MeV}, & \text { ROME, } & \text { arXiv:1212.0301 } \\
242.0(9.5) \mathrm{MeV}, & \text { FNAL/MILC, } & \text { arXiv:1112.3051 } \\
232.0(10) \mathrm{MeV}, & \text { ETM, } & \text { arXiv:1107.1441 } \\
219.0(12) \mathrm{MeV}, & \text { ALPHA, } & \text { arXiv:1210.6524 } \\
235.4(12) \mathrm{MeV}, & \text { RBC/UKQCD, } & \text { arXiv:1404.4670 } \\
224.0(14) \mathrm{MeV}, & \text { ALPHA, } & \text { arXiv:1404.3590 }
\end{array}\right.
$$

Flavour Lattice Averaging Group (FLAG), arXiv:1310.8555 gives

$$
f_{B_{s}}=227.7(4.5) \mathrm{MeV}
$$

Average time-integrated branching ratio:
$\overline{\mathcal{B}}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)=\frac{|N|^{2} M_{B_{s}}^{3} f_{B_{s}}^{2}}{8 \pi \Gamma_{H}^{s}} \boldsymbol{\beta}\left(\left|r C_{A}-u C_{P}\right|^{2} F_{P}+\left|u \beta C_{S}\right|^{2} F_{S}\right)+\mathcal{O}\left(\alpha_{e m}\right)$,
where $\quad N=\frac{V_{t b}^{*} V_{t s} G_{F}^{2} M_{W}^{2}}{\pi^{2}}, \quad r=\frac{2 m_{\mu}}{M_{B_{s}}}, \quad \beta=\sqrt{1-r^{2}}, \quad u=\frac{M_{B_{s}}}{m_{b}+m_{s}}$,
$F_{P}=1-\frac{\Delta \Gamma^{s}}{\Gamma_{L}^{s}} \sin ^{2}\left[\frac{1}{2} \phi_{s}^{\mathrm{NP}}+\arg \left(r C_{A}-u C_{P}\right)\right] \xrightarrow{\mathrm{SMCP}} 1$,
$F_{S}=1-\frac{\Delta \Gamma^{s}}{\Gamma_{L}^{s}} \cos ^{2}\left[\frac{1}{2} \phi_{s}^{\mathrm{NP}}+\arg C_{S}\right] \xrightarrow{\mathrm{SMCP}} \frac{\Gamma_{H}^{s}}{\Gamma_{L}^{s}}$
derived following [K. de Bruyn et al., Phys. Rev. Lett. 109 (2012) 041801]

Average time-integrated branching ratio:
$\overline{\mathcal{B}}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)=\frac{|N|^{2} M_{B_{s}}^{3} f_{B_{s}}^{2}}{8 \pi \Gamma_{H}^{s}} \boldsymbol{\beta}\left(\left|r C_{A}-u C_{P}\right|^{2} F_{P}+\left|u \beta C_{S}\right|^{2} F_{S}\right)+\mathcal{O}\left(\alpha_{e m}\right)$,
where $\quad N=\frac{V_{t b}^{*} V_{t s} G_{F}^{2} M_{W}^{2}}{\pi^{2}}, \quad r=\frac{2 m_{\mu}}{M_{B_{s}}}, \quad \beta=\sqrt{1-r^{2}}, \quad u=\frac{M_{B_{s}}}{m_{b}+m_{s}}$,
$F_{P}=1-\frac{\Delta \Gamma^{s}}{\Gamma_{L}^{s}} \sin ^{2}\left[\frac{1}{2} \phi_{s}^{\mathrm{NP}}+\arg \left(r C_{A}-u C_{P}\right)\right] \xrightarrow{\text { SM CP }} 1$,
$F_{S}=1-\frac{\Delta \Gamma^{s}}{\Gamma_{L}^{s}} \cos ^{2}\left[\frac{1}{2} \phi_{s}^{\mathrm{NP}}+\arg C_{S}\right] \quad \xrightarrow{\text { SM CP }} \frac{\Gamma_{H}^{s}}{\Gamma_{L}^{s}} \quad \begin{aligned} & \text { derived following [K. de Bruyn et al., } \\ & \text { Phys. Rev. Lett. } 109 \text { (2012) 041801] }\end{aligned}$
In the limit of no CP-violation, mass eigenstates are CP eigenstates:
Heavier, CP-odd: $\boldsymbol{B}_{s}^{H}=\frac{1}{\sqrt{2}}\left(\boldsymbol{B}_{s}+\overline{\boldsymbol{B}}_{s}\right)$, annihilated by $\bar{b} \gamma_{5} s+\bar{s} \gamma_{5} b, \quad\left(\tau_{H}=1.615(21) \mathrm{ps}\right)$
Lighter, CP-even: $B_{s}^{L}=\frac{1}{\sqrt{2}}\left(B_{s}-\bar{B}_{s}\right)$, annihilated by $\bar{b} \gamma_{5} s-\bar{s} \gamma_{5} b, \quad\left(\tau_{L}=1.516(11) \mathrm{ps}\right)$
Our interactions in this limit are all CP-even:
$Q_{A}+Q_{A}^{\dagger}=\left[\left(\bar{b} \gamma^{\alpha} \gamma_{5} s\right)+\left(\bar{s} \gamma^{\alpha} \gamma_{5} b\right)\right]\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right)$
$Q_{P}+Q_{P}^{\dagger}=\left[\left(\bar{b} \gamma_{5} s\right)+\left(\bar{s} \gamma_{5} b\right)\right]\left(\bar{\mu} \gamma_{5} \mu\right)$
$\left.Q_{S}+Q_{S}^{\dagger}=\left[\left(\bar{b} \gamma_{5} s\right)-\left(\bar{s} \gamma_{5} b\right)\right](\bar{\mu} \mu) \quad\right\}$ annihilates B_{s}^{L}, produces CP-even dimuons
With SM-like CP-violation - still $Q_{A, P}$ annihilate B_{s}^{H} and Q_{S} annihilates B_{s}^{L}.
Beyond SM - interesting time-dependent observables, see arXiv:1303.3820, 1407.2771.

Evaluation of the LO Wilson coefficients in the SM:

$C_{A}^{(0)}=\frac{1}{2} Y_{0}\left(m_{t}^{2} / M_{W}^{2}\right)$,
$Y_{0}(x)=\frac{3 x^{2}}{8(x-1)^{2}} \ln x+\frac{x^{2}-4 x}{8(x-1)}$,
$C_{S, P}=\mathcal{O}\left(\frac{m_{\mu}}{M_{W}}\right)$.
Effects of $C_{S, P}$ on the branching ratio are suppressed by $M_{B_{s}}^{2} / M_{W}^{2} \quad \Rightarrow$ negligible.
Thus, only C_{A} matters in the SM.

Evaluation of the Wilson coefficients beyond the SM.

 Example 1: the Two-Higgs-Doublet Model II

$$
\tan \beta=v_{2} / v_{1}, \quad z=M_{H^{ \pm}}^{2} / m_{t}^{2}
$$

$$
C_{S} \simeq C_{P} \simeq \frac{m_{\mu} m_{b} \tan ^{2} \beta}{4 M_{W}^{2}} \frac{\ln z}{z-1}>0
$$

H.E. Logan and U. Nierste, NPB 586 (2000) 39 $(\mathcal{O}(\tan \beta)$ neglected $)$
$\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \simeq$ (const.) $\left[\left|\frac{2 m_{\mu}}{M_{B_{s}}} C_{A}-C_{P}\right|^{2}+\left|C_{S}\right|^{2}\right]$
$C_{A}=\underset{\text { positive }}{C_{\mathrm{S}}^{\mathrm{SM}}}+\underset{\text { small }}{\Delta C_{A}}$
$\Rightarrow\left\{\begin{array}{c}\text { suppression for moderate } C_{S, P} \\ \text { enhancement for huge } \tan \beta \text { only }\end{array}\right.$
$\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)$in the Two-Higgs-Doublet Model II

For $M_{H^{ \pm}}=600 \mathrm{GeV}$ and $\tan \beta=50$: suppression by a factor of ~ 2. Enhancement possible only for $\tan \beta>65$.

Evaluation of the Wilson coefficients beyond the SM. Example 2: the MSSM.

For large $\tan \beta: \quad \mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \sim \frac{m_{b}^{2} m_{\mu}^{2}}{M_{A}^{4}} \tan ^{6} \beta$
K. S. Babu and C. F. Kolda, Phys. Rev. Lett. 84 (2000) 228.

Examples of constraints on the MSSM parameter space:

Figs. 1 and 7 from arXiv:1312.5426 by John Ellis.
green lines $\quad-$ bounds from $B_{s} \rightarrow \mu^{+} \mu-$ (CMS \& LHCb 2013, exclusion to the left)
purple lines - ATLAS 95\%CL bounds from $\mathbb{E}_{T}+$ jets
green shaded - excluded by $b \rightarrow s \gamma$
brown shaded - charged LSP
pink shaded

- SUSY helps with $g-2$
blue strips - favoured by Ω_{DM}

Evaluation of the NNLO QCD matching corrections in the SM
[T. Hermann, MM, M. Steinhauser, JHEP 1312 (2013) 097]
W-boxes:
(1LPI)
(a)

(b)

(b)

(c)

(c)

Subtleties: (i) counterterms with finite parts $\sim \bar{b}_{L} \not D s_{L}$
(ii) evanescent operators: $E_{B}=\left(\bar{b} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{5} s\right)\left(\bar{\mu} \gamma^{\sigma} \gamma^{\rho} \gamma^{\nu} \gamma_{5} \mu\right)-4\left(\bar{b} \gamma_{\alpha} \gamma_{5} s\right)\left(\bar{\mu} \gamma^{\alpha} \gamma_{5} \mu\right)$

$$
\boldsymbol{E}_{\boldsymbol{T}}=\operatorname{Tr}\left(\gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{\alpha} \gamma_{5}\right)\left(\bar{b} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \boldsymbol{\mu}\right)+24\left(\bar{b} \gamma_{\alpha} \gamma_{5} s\right)\left(\bar{\mu} \gamma^{\alpha} \gamma_{5} \boldsymbol{\mu}\right)
$$

(a)

Renormalization of \boldsymbol{E}_{B}

Diagrams generating \boldsymbol{E}_{T}

The matching conditions are most easily found by requiring equality of the full SM and the effective theory 1PI off-shell Green's functions that are expanded in external momenta and light masses prior to loop-momentum integration.

Full SM
UV counterterms included
Spurious IR $\frac{1}{\epsilon^{n}}$ remain

Effective Theory
Loop diagrams vanish
UV $\frac{1}{\epsilon^{n}}$ remain

The $\frac{1}{\epsilon^{n}}$ poles cancel in the matching equation.
The only Feynman integrals to calculate: partly-massive tadpoles.
The program MATAD (M. Steinhauser) is used for calculation of 3-loop single-scale partly-massive tadpoles.
The difference $m_{t}-M_{W}$ is taken into account with the help of expansions in y^{n} and $\left(1-y^{2}\right)^{n}$, where $y=M_{W} / m_{t}$.

The programs q2e and \exp (T. Seidensticker, R. Harlander, M. Steinhauser) are used for the asymptotic expansions around $y=0$. On the other hand, the usual Taylor expansion is sufficient around $y=1$.

Perturbative series for the Wilson coefficient at $\mu=\mu_{0} \sim m_{t}, M_{W}$: $C_{A}\left(\mu_{0}\right)=C_{A}^{(0)}\left(\mu_{0}\right)+\frac{\alpha_{s}}{4 \pi} C_{A}^{(1)}\left(\mu_{0}\right)+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} C_{A}^{(2)}\left(\mu_{0}\right)+\frac{\alpha_{e m}}{4 \pi} \Delta_{\mathrm{EW}} C_{A}\left(\mu_{0}\right)+\ldots$

The top quark mass is $\overline{\mathrm{MS}}$-renormalized at μ_{0} with respect to QCD , and on shell with respect to the EW interactions. Both α_{s} and $\alpha_{e m}$ are $\overline{\text { MS-renormalized at } \mu_{0} \text { in the effective theory. }}$

$$
C_{A}^{(n)}=C_{A}^{W,(n)}+C_{A}^{Z,(n)}
$$

To deal with single-scale tadpole integrals, we expand around $y=1$ (solid lines) and around $\boldsymbol{y}=0$ (dashed lines), where $y=M_{W} / m_{t}$. The expansions reach $\left(1-y^{2}\right)^{16}$ and y^{12}, respectively. The blue band indicates the physical region.

Matching scale dependence of $\left|C_{A}\right|^{2}$ gets significantly reduced. The plot corresponds to $\Delta_{\mathrm{EW}} C_{A}\left(\mu_{0}\right)=0$. However, with our conventions for m_{t} and the global normalization, μ_{0}-dependence is due to QCD only.

NNLO fit (with $\Delta_{E W} C_{A}\left(\mu_{0}\right)=0$):
$C_{A}=0.4802\left(\frac{M_{t}}{173.1}\right)^{1.52}\left(\frac{\alpha_{s}\left(M_{Z}\right)}{0.1184}\right)^{-0.09}+\mathcal{O}\left(\alpha_{e m}\right)$

Evaluation of the NLO EW matching corrections in the SM

[C. Bobeth, M. Gorbahn, E. Stamou, Phys. Rev. D 89 (2014) 034023]
Method: similar to the NNLO QCD case. Two-loop integrals with three mass scales are present.
Dependence of the final result on μ_{0} in various renormalization schemes (dotted -LO , solid -NLO):

In all the four plots: no QCD corrections to C_{A} included, $m_{t}\left(m_{t}\right)$ w.r.t. QCD used.
OS-2 scheme: Global normalization factor in $\mathcal{L}_{\mathrm{eff}}$ set to $N=V_{t b}^{*} V_{t s} G_{F}^{2} M_{W}^{2} / \pi^{2}$
Masses at the LO renormalized on-shell w.r.t. EW interactions (including M_{W} in N)
Plotted quantity: $-2 C_{A} G_{F}^{2} M_{W}^{2} / \pi^{2}$ in GeV^{-2}
NLO EW matching correction to the BR: -3.7%
other schemes: Global normalization factor in $\mathcal{L}_{\mathrm{eff}}$ set to $4 V_{t b}^{*} V_{t s} G_{F} / \sqrt{2}$ At the LO, $\alpha_{e m}\left(\mu_{0}\right)$ used

OS-1: Masses as in OS-2, $\sin ^{2} \theta_{W}$ on-shell
HY (hybrid): Masses as in OS-2, $\sin ^{2} \theta_{W}$ as in $\overline{M S}$.

SM predictions for all the branching ratios $\overline{\mathcal{B}}_{q \ell} \equiv \overline{\mathcal{B}}\left(B_{q} \rightarrow \ell^{+} \ell^{-}\right)$

[C. Bobeth, M. Gorbahn, T. Hermann, MM, E. Stamou, M. Steinhauser, PRL 112 (2014) 101801]

$$
\begin{array}{lll}
\overline{\mathcal{B}}_{s e} \times 10^{14}=(8.54 \pm 0.13) R_{t \alpha} R_{s}=8.54 \pm 0.55, & \\
\overline{\mathcal{B}}_{s \mu} \times 10^{9} & =(3.65 \pm 0.06) R_{t \alpha} R_{s}=3.65 \pm 0.23, & (\text { LHCb \& CMS : } 2.9 \pm 0.7) \\
\overline{\mathcal{B}}_{s \tau} \times 10^{7} & =(7.73 \pm 0.12) R_{t \alpha} R_{s}=7.73 \pm 0.49, & \\
\overline{\mathcal{B}}_{d e} \times 10^{15}=(2.48 \pm 0.04) R_{t \alpha} R_{d}=2.48 \pm 0.21, & \\
\overline{\mathcal{B}}_{d \mu} \times 10^{10}=(1.06 \pm 0.02) R_{t \alpha} R_{d}=1.06 \pm 0.09, & \left(\text { LHCb \& CMS : } 3.6_{-1.4}^{+1.6}\right) \\
\overline{\mathcal{B}}_{d \tau} \times 10^{8} & =(2.22 \pm 0.04) R_{t \alpha} R_{d}=2.22 \pm 0.19, &
\end{array}
$$

where

$$
\begin{aligned}
R_{t \alpha} & =\left(\frac{M_{t}}{173.1 \mathrm{GeV}}\right)^{3.06}\left(\frac{\alpha_{s}\left(M_{Z}\right)}{0.1184}\right)^{-0.18} \\
R_{s} & =\left(\frac{f_{B_{s}}[\mathrm{MeV}]}{227.7}\right)^{2}\left(\frac{\left|V_{c b}\right|}{0.0424}\right)^{2}\left(\frac{\left|V_{t b}^{\star} V_{t s} / V_{c b}\right|}{0.980}\right)^{2} \frac{\tau_{H}^{s}[\mathrm{ps}]}{1.615} \\
R_{d} & =\left(\frac{f_{B_{d}}[\mathrm{MeV}]}{190.5}\right)^{2}\left(\frac{\left|V_{t b}^{\star} V_{t d}\right|}{0.0088}\right)^{2} \frac{\tau_{d}^{\mathrm{av}}[\mathrm{ps}]}{1.519}
\end{aligned}
$$

Sources of uncertainties	$f_{B_{q}}$	CKM	τ_{H}^{q}	M_{t}	α_{s}	other parametric	non- parametric	\sum
$\overline{\mathcal{B}}_{s \ell}$	4.0%	4.3%	1.3%	1.6%	0.1%	$<0.1 \%$	1.5%	6.4%
$\overline{\mathcal{B}}_{d \ell}$	4.5%	6.9%	0.5%	1.6%	0.1%	$<0.1 \%$	1.5%	8.5%

In the case of $\overline{\mathcal{B}}_{s \ell}$, the main uncertainty (4.2\%) originates from $\left|V_{c b}\right|=0.0424(9)$ that comes from a recent fit to the inclusive semileptonic data [P. Gambino and C. Schwanda, arXiv:1307.4551].

Radiative tail in the dimuon invariant mass spectrum

Red line - no real photon and/or radiation only from the muons. It vanishes when $\boldsymbol{m}_{\boldsymbol{\mu}} \longrightarrow \mathbf{0}$.
Blue line - remainder due to radiation from the quarks. IR-safe because \boldsymbol{B}_{s} is neutral.
Phase-space suppressed but survives in the $\boldsymbol{m}_{\boldsymbol{\mu}} \longrightarrow \mathbf{0}$ limit.
Interference between the two contributions is negligible - suppressed both by phase-space and $\boldsymbol{m}_{\mu}^{2} / \boldsymbol{M}_{\boldsymbol{B}_{s}}^{2}$.

Summary

- Combining the recently calculated NNLO QCD and NLO EW corrections to $\overline{\mathcal{B}}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)$, we find a significant reduction of the non-parametric theoretical uncertainties ($\sim 8 \% \rightarrow \sim 1.5 \%$).
- The current SM result $\overline{\mathcal{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.65 \pm 0.23) \times 10^{-9}$ is consistent with the measured value of $(2.9 \pm 0.7) \times 10^{-9}$. The main theory uncertainties are parametric ($\left|V_{c b}\right|, f_{B_{s}}, \ldots$).
- Determination of $\left|V_{c b}\right|$ from inclusive semileptonic B decays is currently limited by theory uncertainties. Rough estimates of higher-dimensional operator matrix elements would help.

