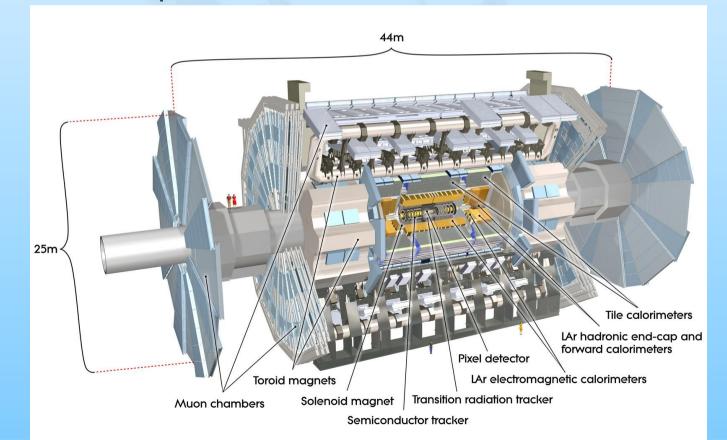
Beauty2014

Mixing and CP-Violation in the decay of $B_{c} \rightarrow J/\Psi \Phi$ in ATLAS

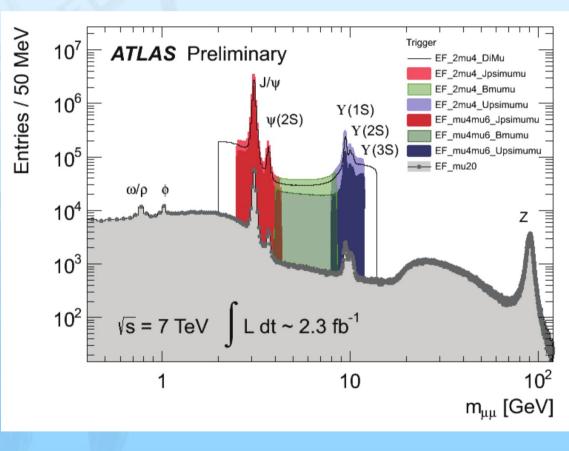
William Dearnaley Lancaster University & Rutherford Appleton Laboratory, on behalf of the ATLAS Collaboration

Introduction


- Presenting latest public ATLAS $B_s \rightarrow J/\Psi \Phi$ results
- CERN-PH-EP-2014-043
- 4.9 fb⁻¹ of data collected in 2011
 - ATLAS detector and B-Physics
 CP-Violation in B_s system
 - •B_s \rightarrow J/ Ψ Φ method
 - $\bullet B_{_S} \rightarrow J/\Psi \ \Phi \ analysis \ results$

ATLAS Detector

ATLAS is multipurpose detector, built to study a vast array of particle physics channels.


Main components of use to B-Physics studies:

- Precision outer Muon Spectrometer for $|\eta| < 2.5$, with resolution ~40µm
- Inner Detector for $|\eta| < 2.5$ with resolution ~10µm

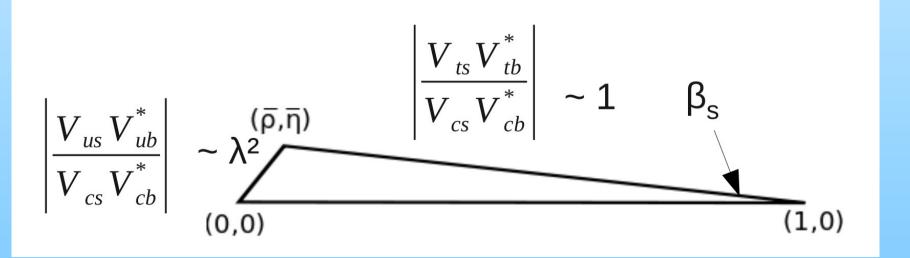
ATLAS B-Physics Triggers

- L1:
 - Single and Di-muon triggers from 4 \rightarrow 40 GeV P_{\perp}
- L2 & EF:
 - Searches for muons from a common vertex with opposing charges
 - Applies loose mass cuts, shown in plot:
 - J/ψ: 2.5 < M(μμ) < 4.3 GeV
 - B: 4.0 < M(μμ) < 8.5 GeV

CP-Violation in the B_s system

• Mixing between flavour states results in heavy and light mass eigenstates

 $\Delta m_{s} = m_{s}^{H} - m_{s}^{L} \approx 2|M_{12}|$, $\Delta m_{s} \approx 17.77 \text{ ps}^{-1}$ $\Delta \Gamma_{s} = \Gamma_{s}^{L} - \Gamma_{s}^{H}$, $\Delta \Gamma_{s} = 0.087 \pm 0.021 \text{ ps}^{-1}$

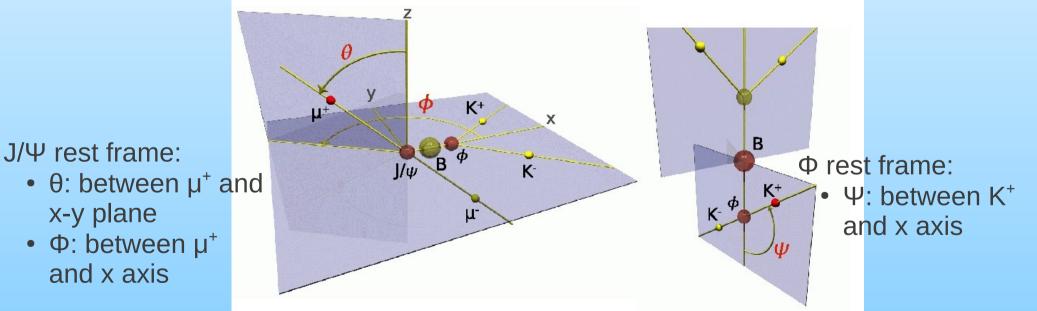


Feynman box diagrams for B mixing.

- In the Standard Model, CP-Violation is described by a single complex phase in CKM matrix
- In the B_s system, Φ_s is predicted by the Standard Model to be small: $\Phi_s \approx -2\beta_s = -0.0368 \pm 0.0018$ rad
- $B_s \rightarrow J/\Psi \Phi$ gives a clean extraction of Φ_s

$$\beta_s \equiv \arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$$

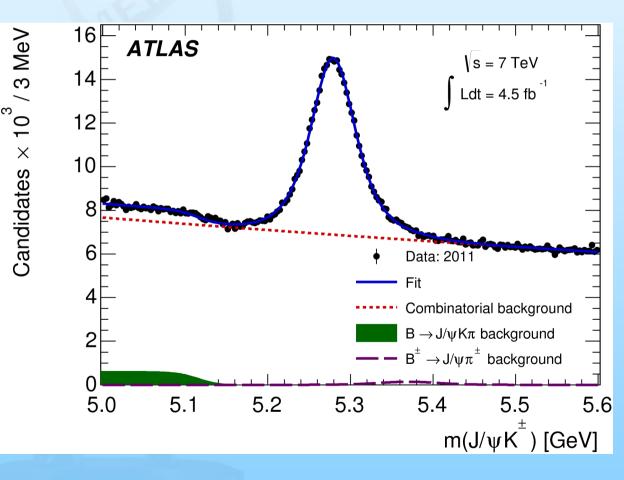
- Many new physics models predict large values for $\Phi_{_{\rm S}}$, whilst still satisfying current constraints

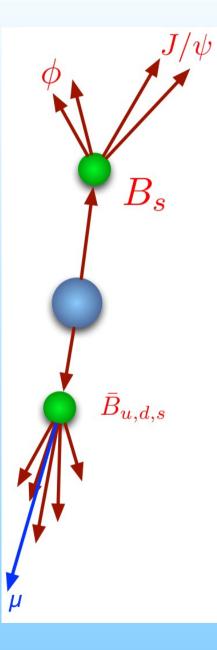

Angular Analysis

- $B_{a} \rightarrow J/\Psi \Phi$ described with amplitudes and strong phases:
 - Amplitudes

x-y plane

- A₀: L=0, CP-even
- A₁: L=1, CP-odd
- A_{II}: L=2, CP-even


- Strong phases
 - $\delta_0 = 0$
 - δ_{\perp} : arg[$A_0(0) A_0^*(0)$]
 - δ_{\parallel} : arg[$A_{\parallel}(0) A_{0}^{*}(0)$]
- 3 angle time-dependent angular analysis used to extract parameters

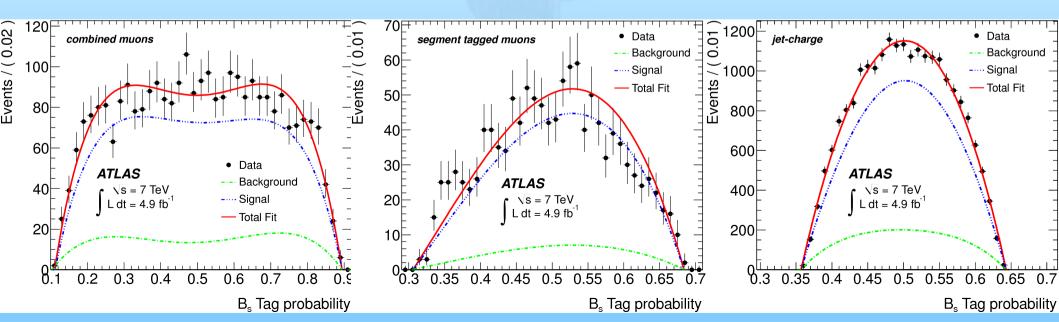

• A is the contribution of CP-odd B $\rightarrow J/\Psi K^+K^-(f_0)$ where the non-resonant K^+K^- or f meson is an S-wave state

$B_s \rightarrow J/\Psi \Phi$ method – Event Selection

- J/ Ψ mass windows are tuned to different widths, depending on the final location of daughter muons. Barrel / Endcap
- Φ mass window is 22 MeV wide
- Kaon $P_{\perp} > 1 \text{GeV}$
- For B vertex from 4 tracks χ^2 / d.o.f. < 3
- 4.9 fb⁻¹ of data collected in 2011
- ~131,000 $\rm B_s$ candidates within 5.15 < m(B_s) < 5.65 GeV used in fit

Flavour Tagging

- Opposite side tagging uses $b\overline{b}$ pairs to infer the signal flavour of the other B meson
- Calibrated on self tagging $B^{\pm} \rightarrow J/\Psi \ K^{\pm}$
- Muon tagging:
 - Additional muon pt>2.5 GeV, $|\eta|$ <2.5
 - Originating near signal primary interaction $|\Delta z| < 5$ mm
 - Use muon and tracks within cone $\Delta R < 0.5$, and construct weighted cone charge
- Jet charge tagging
 - Absence of a muon
 - Use tracks within cone $\Delta R < 1.0$, and construct weighted cone charge


$$Q_{\mu}, Q_{\text{jet}} = \frac{\sum_{i}^{N \text{ tracks}} q^{i} \cdot (p_{T}^{i})^{\kappa}}{\sum_{i}^{N \text{ tracks}} (p_{T}^{i})^{\kappa}}$$

Tag Performance

Efficiency: $\epsilon_{tag} = \frac{N_r + N_w}{N_r}$

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]	Dilution:	$D_{tag} = \frac{N_r - N_w}{N_r + N_w}$
Combined μ	3.37 ± 0.04	50.6 ± 0.5	0.86 ± 0.04		$1 v_r + 1 v_w$
Segment Tagged μ	1.08 ± 0.02	36.7 ± 0.7	0.15 ± 0.02	Fraction:	$w_{tag} = \frac{N_w}{N_r + N_w}$
Jet charge	27.7 ± 0.1	12.68 ± 0.06	0.45 ± 0.03	1 100010111	$N_r + N_w$
Total	32.1 ± 0.1	21.3 ± 0.08	1.45 ± 0.05	Tagging	O D^2
				Power:	$Q_{tag} = \epsilon_{tag} D_{tag}^2$

- In the likelihood fit to B_s data, per-candidate probability for signal and background are considered seperately
- $N_r = \#$ correctly tagged $N_w = \#$ incorrectly tagged $N_t = \#$ total
- Additional terms are parameterised from fits to sideband-subtracted (signal) and sideband (background) B data
- Single track results (tagged charge as -1 or 1) are treated separately

Likelihood fit model

Unbinned maximum likelihood fit with PDFs for signal, B₀ background and all other backgrounds

$$\ln \mathcal{L} = \sum_{i=1}^{N} \ln (f_{s} \cdot \mathcal{F}_{s}(m_{i}, t_{i}, \Omega_{i}) + f_{s} \cdot f_{B^{0}} \cdot \mathcal{F}_{B^{0}}(m_{i}, t_{i}, \Omega_{i}) + (1 - f_{s} \cdot (1 + f_{B^{0}}))\mathcal{F}_{bkg}(m_{i}, t_{i}, \Omega_{i}))$$

 $\mathscr{F}_{s}(m_{i},t_{i},\Omega_{i},P(B|Q)) = P_{s}(m_{i}|\sigma_{m_{i}}) \cdot P_{s}(\sigma_{m_{i}}) \cdot P_{s}(\Omega_{i},t_{i},P(B|Q)|\sigma_{t_{i}}) \cdot P_{s}(\sigma_{t_{i}}) \cdot P_{s}(P(B|Q)) \cdot A(\Omega_{i},p_{T_{i}}) \cdot P_{s}(p_{T_{i}})$

- 26 free parameters extracted from fit
- 9 physical variables describing $B_s \rightarrow J/\Psi \Phi$ and S-wave component: $\Delta\Gamma$, Γ_s , Φ_s , $|A_0(0)|^2$, $|A_{\parallel}(0)|^2$, $|A_s(0)|^2$, δ_{\parallel} , δ_{\perp} , δ_s
- Measured variables:
 - Proper decay time and corresponding error: t_i, σ_{t_i}
 - Mass and corresponding error: m_i , σ_{m_i}
 - Transversity angles $\Omega_i(\theta, \phi, \psi)$
 - Tagging probability

Fit Projections

- Fit projections to all data passing selections
- 22690±160 candidates extracted

Fitted Signal

Total Fit

Fitted Background

ATLAS

5.317 GeV < M(B) < 5.417 GeV

\s = 7 TeV

2

L dt = 4.9 fb

Events / (π/10 rad)

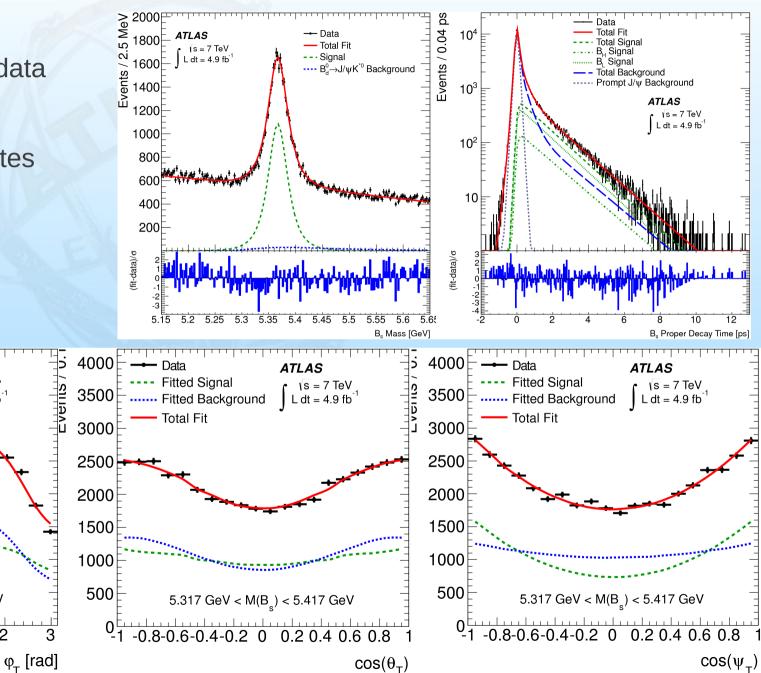
4000

3500

3000

2500

2000

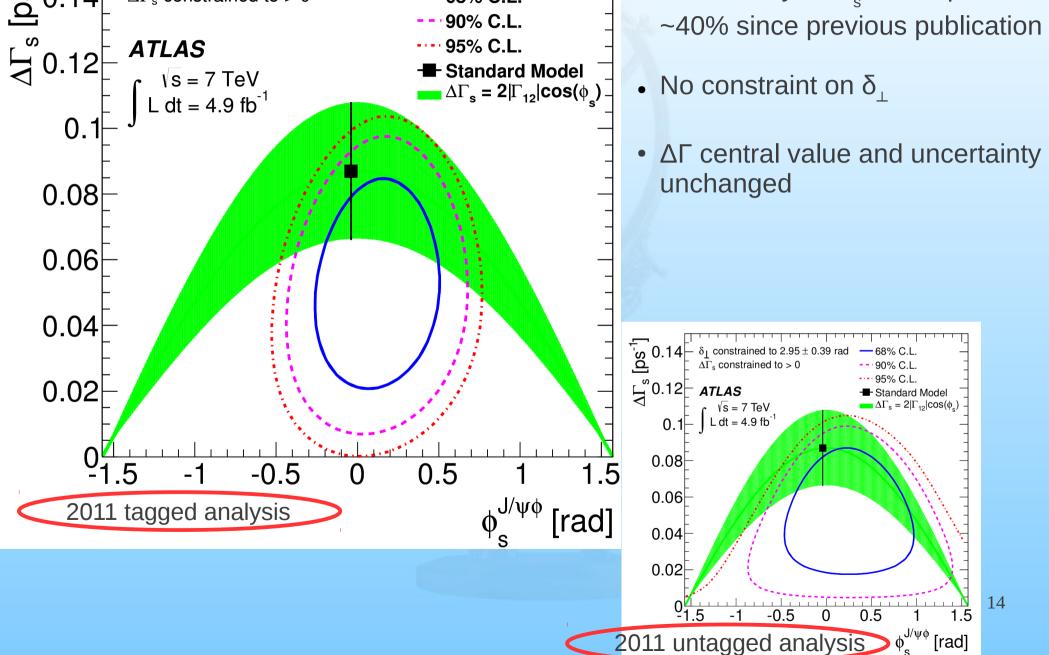

1500

1000

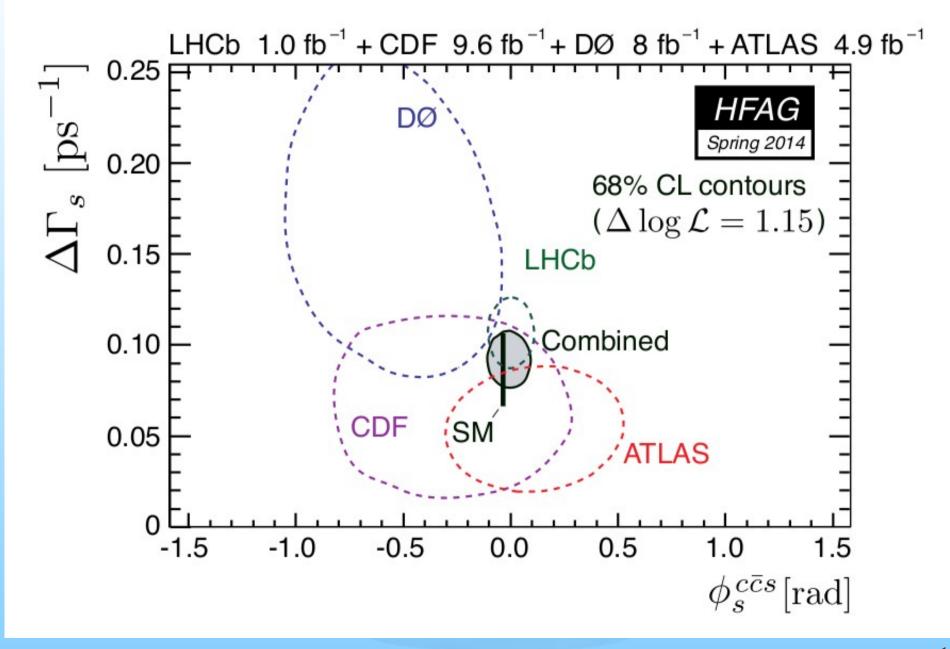
500

0

-3


$B_s \rightarrow J/\Psi \Phi$ analysis results

- Φ_s consistent with Standard Model predictions and previous untagged analysis results
- S-wave amplitude compatible with 0
- $\delta_{_{||}}$ and $\delta_{_{\perp}}$ $\delta_{_{s}}$ are given as 68% CL
- Tagged analysis allows for δ_{\perp} to be determined from the fit, where it was previously constrained

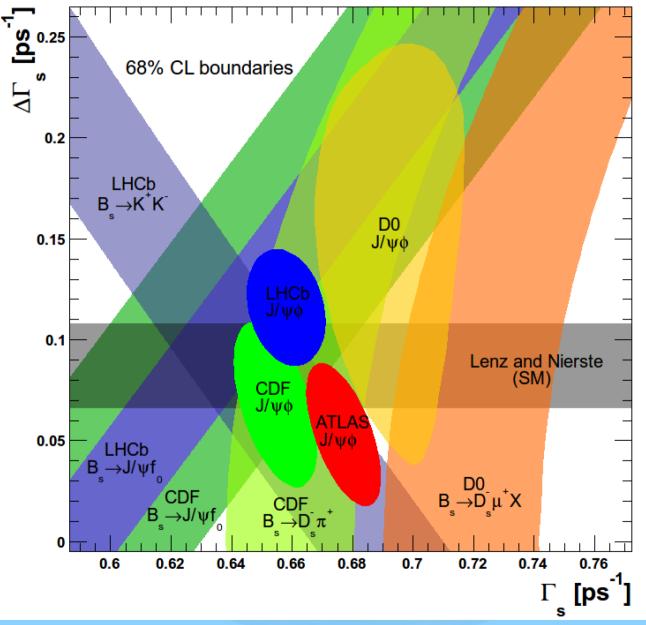

 $\phi_s = 0.12 \pm 0.25 \text{ (stat.)} \pm 0.05 \text{ (syst.) rad}$ $\Delta \Gamma_s = 0.053 \pm 0.021 \text{ (stat.)} \pm 0.010 \text{ (syst.) ps}^{-1}$ $\Gamma_s = 0.677 \pm 0.007 \text{ (stat.)} \pm 0.004 \text{ (syst.) ps}^{-1}$ $|A_{\parallel}(0)|^2 = 0.220 \pm 0.008 \text{ (stat.)} \pm 0.009 \text{ (syst.)}$ $|A_0(0)|^2 = 0.529 \pm 0.006 \text{ (stat.)} \pm 0.012 \text{ (syst.)}$ $\delta_{\perp} = 3.89 \pm 0.47 \text{ (stat.)} \pm 0.11 \text{ (syst.) rad}$

	ϕ_s	$\Delta\Gamma_s$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
	[rad]	$[ps^{-1}]$	$[ps^{-1}]$				[rad]	[rad]	[rad]
ID alignment	$< 10^{-2}$	$<\!10^{-3}$	$<\!\!10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	-	$<\!\!10^{-2}$	$< 10^{-2}$	-
Trigger efficiency	$< 10^{-2}$	$<\! 10^{-3}$	0.002	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$<\!\!10^{-2}$	$< \! 10^{-2}$	$< \! 10^{-2}$
B^0 contribution	0.03	0.001	$<\!\!10^{-3}$	$< 10^{-3}$	0.005	0.001	0.02	$< \! 10^{-2}$	$< \! 10^{-2}$
Tagging	0.03	$<\! 10^{-3}$	$<\!\!10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.04	$< \! 10^{-2}$	$< \! 10^{-2}$
Acceptance	0.02	0.004	0.002	0.002	0.004	-	-	$< \! 10^{-2}$	-
Models:									
Default fit	$< 10^{-2}$	0.003	$<\!\!10^{-3}$	0.001	0.001	0.006	0.07	0.01	0.01
Signal mass	$< 10^{-2}$	0.001	$<\!\!10^{-3}$	$< \! 10^{-3}$	0.001	$<\!10^{-3}$	0.03	0.04	0.01
Background mass	$< 10^{-2}$	0.001	0.001	$< \! 10^{-3}$	$< \! 10^{-3}$	0.002	0.06	0.02	0.02
Resolution	0.02	$<\! 10^{-3}$	0.001	0.001	$< \! 10^{-3}$	0.002	0.04	0.02	0.01
Background time 0.		0.001	$<\!\!10^{-3}$	0.001	$< \! 10^{-3}$	0.002	0.01	0.02	0.02
Background angles	0.02	0.008	0.002	0.008	0.009	0.027	0.06	0.07	0.03
Total	0.05	0.010	0.004	0.009	0.012	0.028	0.11	0.09	0.04

 $\Phi_{s} - \Delta \Gamma \text{ contour plot}$ • Uncertainty of Φ_s has improved ~40% since previous publication

Contour plot comparison

Conclusion


- Latest ATLAS results for $B_{_{S}}^{} \rightarrow J/\psi ~\Phi$ analysis of 2011 data now include tagging
 - Muon cone charge tagging
 - Jet charge tagging
- Final results are an improvement on previous results on the same data due to inclusion of tagging
- ATLAS $B_s \rightarrow J/\Psi \Phi$ are in generally good agreement with other experiments
- No current evidence for physics beyond the Standard Model
- ATLAS is currently working towards publishing results for $B_s \rightarrow J/\psi \Phi$ using 2012 data

$$\begin{split} \phi_s &= 0.12 \pm 0.25 \text{ (stat.)} \pm 0.05 \text{ (syst.) rad} \\ \Delta \Gamma_s &= 0.053 \pm 0.021 \text{ (stat.)} \pm 0.010 \text{ (syst.) ps}^{-1} \\ \Gamma_s &= 0.677 \pm 0.007 \text{ (stat.)} \pm 0.004 \text{ (syst.) ps}^{-1} \\ |A_{\parallel}(0)|^2 &= 0.220 \pm 0.008 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \\ |A_0(0)|^2 &= 0.529 \pm 0.006 \text{ (stat.)} \pm 0.012 \text{ (syst.)} \\ \delta_{\perp} &= 3.89 \pm 0.47 \text{ (stat.)} \pm 0.11 \text{ (syst.) rad} \end{split}$$

• Possible improvements in future due to addition of IBL

Backup Slides

ΔΓ - Γ Plot comparison

Plot taken from: http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/BPHY-2011-05/

Reference Material:

- Paper:
 - CERN-PH-EP-2014-043 "Flavour tagged time dependent angular analysis of the $B^0_{\ s} \rightarrow J/\psi \phi$ decay and extraction of $\Delta\Gamma_s$ and the weak phase Φ_s in ATLAS"
- Slides:
 - Sandro Palestini –
 - James Walder –
 - Adam Barton -
 - Jochen Sckieck –
 - Alastair Dewhurst –

ATL-PHYS-SLIDE-2012-491 ATL-PHYS-SLIDE-2013-306 ATL-PHYS-SLIDE-2012-781 ATL-PHYS-SLIDE-2013-529 ATL-PHYS-SLIDE-2013-217