Study of *B* decays with missing-*E* at *B*-factories (Belle & BABAR)

Youngjoon Kwon

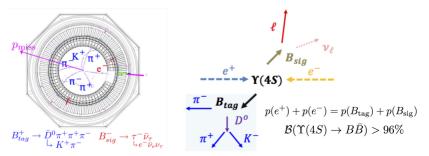
Yonsei University Seoul, Korea

July 14, 2014 @ BEAUTY 2014

Y. Kwon (Yonsei Univ.)

Study of B decays with missing-E at B-factories

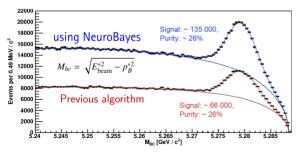
Outline


- Introduction: **how to do missing-***E*
- *B* decay modes with missing-*E* (Belle & BABAR)*
 - * $B^+ \rightarrow \tau^+ \nu_{\tau}$
 - * $B \rightarrow D^{(*)} \tau^+ \nu_{\tau}$
 - * $B^+ \rightarrow \ell^+ \nu_\ell$
 - * search for heavy- ν
 - * invisible *B* decays, e.g. $B^0 \rightarrow \nu \bar{\nu}(\gamma)$
 - * semi-invisible *B* decays, e.g. $B \to h^{(*)} \nu \bar{\nu}$

*For semileptonic decays, $B \to X \ell^+ \nu_{\ell}$, see Bill Gary talk.

Y. Kwon (Yonsei Univ.)

How to study *B* decays with missing-*E*


- (Ex) $B \to X_u \ell^+ \nu_\ell, B^+ \to \tau^+ \nu_\tau$ and other exotic kinds (e.g. $B^0 \to \nu \bar{\nu}$)
- hadronic tagging method
 - ^k full reconstruction of B_{tag} in $\Upsilon(4S) \rightarrow B_{\text{sig}}B_{\text{tag}}$ ⇒ measure B_{tag} , hence constraining the charge, flavor, & (E, \vec{p}) of B_{sig}
 - \Rightarrow very high-purity, but with low-efficiency ($\sim \mathcal{O}(0.1\%)$)
 - * need an algorithm for improved full-reconstruction of B mesons

Hadronic B-tagging, improved

Neurobayes M. Feindt, *et al.*, NIM A 654, 432 (2011)

- using a **neural** network
- the NN output can be interpreted as Bayesian probability
- provides a well-discriminating variable for intermediate cuts, *whose behaviors are under control*

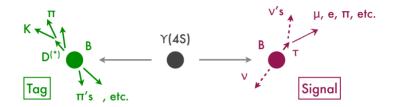
 * ×(2 ~ 3) statistical gain over previous hadron-tagged analyses!

 $B^+ \to \tau^+ \nu_{\tau}$

Γ(B⁺ → τ⁺ν_τ) can be affected by new physics effects.
 For instance, with H⁺ of 2-Higgs doublet model (type II)

$$\Gamma(B^+ o au^+
u_ au)=\Gamma_{
m SM}(B^+ o au^+
u_ au) imes r_H$$

where $r_H=ig[1-(m_B^2/m_H^2) an^2etaig]^2$ w.s. Hou, PRD 48, 2342 (1993)


• First evidence for $B^+ \to \tau^+ \nu_{\tau}$ by Belle using hadronic tagging ("Full reconstruction")

PRL 97, 251802 (2006)

Y. Kwon (Yonsei Univ.)

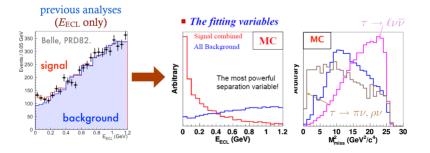
I

$B^+ ightarrow au^+ u_ au$ analysis by tagging

- Two different methods of tagging
 - * hadronic tag: use fully-reconstructed hadronic B_{tag} decays
 - * semileptonic tag: use $B \to D^{(*)} \ell^+ \nu_{\ell}$

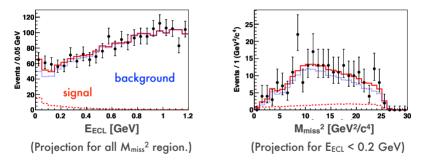
missing one $\nu_\ell,$ but clean and plentiful enough to compensate for it

$B^+ \rightarrow \tau^+ u_{ au}$ (Belle) hadronic tagging


What's new from the previous hadronic-tag analysis (PRL, 2006)

- Reprocessing of full Belle data set (2011) \Rightarrow improved detection efficiencies of low p_T tracks and neutral particles
- $N_{B\overline{B}} = 771 \text{M}$ (c.f. 449M for PRL, 2006; $+72\% \uparrow$)
- New algorithm for hadronic tagging \Rightarrow effectively, $\times 3 B_{tag}$ sample size
- Signal extraction by 2D fit to (*E*_{ECL}, *M*²_{miss}) *c.f.* just a 1D fit to *E*_{ECL} for previous result (2006)
 - * $E_{\text{ECL}} = \sum$ (energies of neutral clusters, not belonging to either B_{tag} or π^0 in B_{sig}) * $M_{\text{miss}}^2 = (E_{\text{CM}} - E_{B_{\text{tag}}} - E_{B_{\text{sig}}})^2 - |\vec{p}_{B_{\text{tag}}} + \vec{p}_{B_{\text{sig}}}|^2$

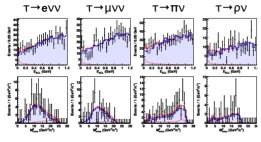
NIMA 654, 432 (2011)


$B^+ \rightarrow \tau^+ u_{ au}$ (Belle) – signal extraction

- Signal au modes: $au^+ o e^+ \nu_e \overline{\nu}_{ au}, \ \mu^+ \nu_\mu \overline{\nu}_{ au}, \ \pi^+ \overline{\nu}_{ au}, \ \rho^+ \overline{\nu}_{ au}$
- π^0 , K_L^0 veto demand no π^0 , K_L^0 after reconstructing B_{tag} and B_{sig}
- 2D fitting to $E_{\text{ECL}} \& M_{\text{miss}}^2$
 - improve sensitivity by $\sim 20\%$; more robust against peaking backgs. in $E_{
 m ECL}$

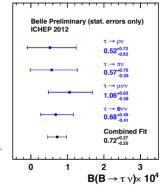
Belle, signal extraction $B^+ \rightarrow \tau^+ \nu_{\tau}$ (Belle) – Result

• Simultaneous fit to different *τ* decay modes Figures below shown for the sum of different *τ* decay modes



• Signal yield: $62_{-22}^{+23} \pm 6$ Major sources of systematic error are: background PDF (\$350); K_L^0 efficiency (7.3%), and B_{tag} efficiency ($\mathcal{B}_L^{\text{(b)}} \rightarrow \tau \nu$) = $[0.72_{-0.25}^{+0.27} \pm 0.11] \times 10^{-4}$. • $\mathcal{B}(B^+ \rightarrow \tau^+ \nu_{\tau}) = (0.72_{-0.25}^{+0.27} \pm 0.11) \times 10^{-4}$ PRL 110, 131801 (2013)

Y. Kwon (Yonsei Univ.)

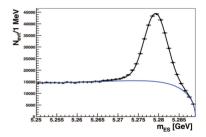

$B^+ \rightarrow \tau^+ \nu_{\tau}$ (Belle) – Result

• A consistency check by fitting separately for different τ modes

Take $\tau \rightarrow e \nu \nu$, $\mu \nu \nu$, $\rho \nu$ cross-feeds in $\tau \rightarrow \pi \nu$ candidates as signal.

Sub-mode	$N_{\rm sig}$	$\epsilon (10^{-4})$	$\mathcal{B}(10^{-4})$
$\tau^- \to e^- \bar{\nu}_e \nu_\tau$	16^{+11}_{-9}	3.0	$0.68^{+0.49}_{-0.41}$
$\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$	26^{+15}_{-14}	3.1	$1.06_{-0.58}^{+0.63}$
$\tau^- \to \pi^- \nu_\tau$	8^{+10}_{-8}	1.8	$0.57^{+0.70}_{-0.59}$
$\tau^- \to \pi^- \pi^0 \nu_\tau$	14^{+19}_{-16}	3.4	$0.52^{+0.72}_{-0.62}$
Combined	62^{+23}_{-22}	11.2	$0.72^{+0.27}_{-0.25}$

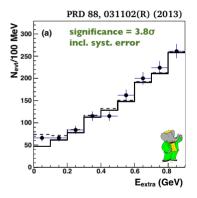
Consistent results over different T modes!

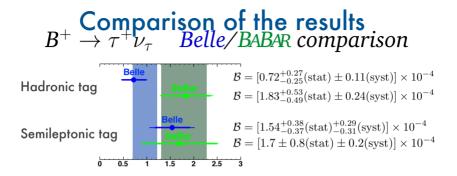

Y. Kwon (Yonsei Univ.)

Study of B decays with missing-E at B-factories

$B^+ ightarrow au^+ u_ au$ (BABAR)

- Hadronic tagging analysis is updated with $N_{B\overline{B}} = 468 \times 10^6$
- Signal τ modes: $\tau^+ \rightarrow e^+ \nu_e \overline{\nu}_{\tau}, \ \mu^+ \nu_{\mu} \overline{\nu}_{\tau}, \ \pi^+ \overline{\nu}_{\tau}, \ \rho^+ \overline{\nu}_{\tau}$
- Mode-dependent, optimized selection criteria


Variable	e^+	μ^+	π^+	$ ho^+$
\mathcal{P}		> 1	10%	
Cluster energy (MeV)		>	60	
$\mathcal{R}2$	< 0.57	< 0.56	< 0.56	< 0.51
$ \cos \theta_{TB} $	< 0.95	< 0.90	< 0.65	< 0.8
L_P			> 0.30	> 0.45

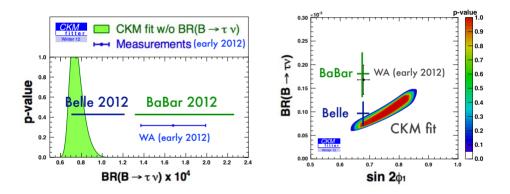


$B^+ ightarrow au^+ u_ au$ (BABAR) – Result

- Signal extraction via E_{extra} (= E_{ECL}) $N_{\text{signal}} = 62.1 \pm 17.3$ events from simultaneous fit to the four τ modes
- $\mathcal{B}(B^+ \to \tau^+ \nu_{\tau}) = (1.83^{+0.53}_{-0.49} \pm 0.24) \times 10^{-4}$
- Major systematic uncertainties are from background PDF's (10%), *B*-tag efficiency (5%), etc.
- Consistent results over different τ decay modes, within $\sim 2\sigma$

Decay Mode	$\epsilon_k(\times 10^{-4})$	Signal yield	
$\tau^+ \to e^+ \nu \bar{\nu}$	2.47 ± 0.14	4.1 ± 9.1	$0.35^{+0.84}_{-0.73}$
$\tau^+ \to \mu^+ \nu \bar{\nu}$	2.45 ± 0.14		$1.12^{+0.90}_{-0.78}$
	0.98 ± 0.14	17.1 ± 6.2	$3.69^{+1.42}_{-1.22}$
$\tau^+ \to \rho^+ \nu$	1.35 ± 0.11	24.0 ± 10.0	$3.78^{+1.65}_{-1.45}$
combined		62.1 ± 17.3	$1.83^{+0.53}_{-0.49}$

Belle combined: $\mathcal{B}(B^+ \to \tau^+ \nu_{\tau}) = (0.96 \pm 0.26) \times 10^{-4}$ BaBar combined: $\mathcal{B}(B^+ \to \tau^+ \nu_{\tau}) = (1.79 \pm 0.48) \times 10^{-4}$


• Belle vs. BaBar – consistent within $\sim 1.5\sigma$

• The ises the same consistent price of the figure $\mathcal{B}(1, 10, \pm 0.30) \times 10^{-4}$, which is based on

* $f_B = (190 \pm 13) \text{ MeV}$ from HPQCD, PRD 80, 014503 (2009) • $f_B = f_B = f_{ub} = 0.2012 + 1.33 \text{ Mag} \text{ from HPQCD}, \text{ from HPQCD},$

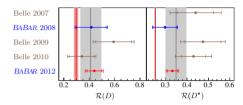
Y. Kwon (Yonsei Univ.)

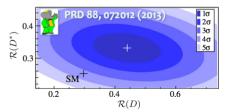
$B^+ ightarrow au^+ u_ au$ Belle/BABAR comparison

$B^+ ightarrow au^+ u_ au$ constraints on charged Higgs

• Assuming 2-Higgs doublet model (type II),

 $\mathcal{B}(B^+ o au^+
u_ au) = \mathcal{B}_{ ext{SM}}(B^+ o au^+
u_ au) imes \left[1 - (m_B^2/m_H^2) an^2 eta
ight]^2$




 $B \rightarrow D^{(*)} \tau^+ \nu_{\tau}$

- B → D^(*)τ⁺ν_τ addresses similar NP issues with B⁺ → τ⁺ν_τ.
- \exists a tendency:

$$\begin{split} R(D^{(*)}) &= \frac{\mathcal{B}(B \rightarrow D^{(*)}\tau^+\nu_{\tau})}{\mathcal{B}(B \rightarrow D^{(*)}\ell^+\nu_{\ell})} \\ &> R_{\rm SM}(D^{(*)}) \end{split}$$

- PRL 109, 101802 (2012) BaBar $(R(D), R(D^*)) \neq (R(D), R(D^*))_{SM}$ by 3.4 σ .
- Existing Belle results (PRL 2007, PRD 2010) show similar tendency, but not as significant.
- Belle is finalizing the measurement of
 B → D
 ^(*) τ⁺ν_τ with hadronic B-tagging, but
 not ready yet. Please stay tuned!

$B ightarrow D^{(*)} au^+ u_{ au}$

• BaBar obtains signal yield by fitting $(M_{\text{miss}}^2, p_{\ell}^*)$.

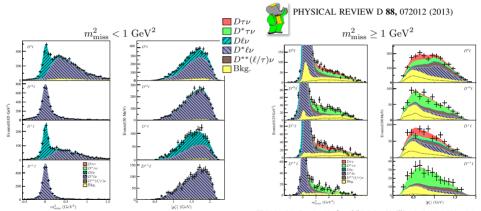
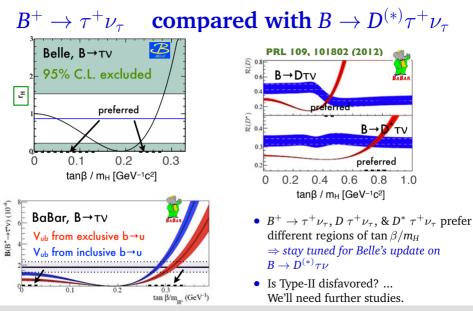



FIG. 7 (color online). Comparison of the m_{ains}^2 and $|p_i^*|$ distributions of the $D^{(i)}$ samples (data points) with the projections of the results of the isospin-unconstrained fit (datcked colored distributions). The $|p_i^*|$ distributions show the normalization-enriched region with $m_{ains}^2 < 10^{42}$, thus excluding most of the signal events in these samples.

FIG.8 (core online). Comparison of the $m_{m_{cl}}^{2}$ and p_{l}^{2} distributions of the $D^{1/2}$ (a simples (data psint) with the projections of the results of the isospin-uncontanied fit (stacked colored distributions). The region above the dathed line of the background component corresponds to BB background and the region below corresponds to Continuum. The peak at $m_{m_{cl}} = 0$ in the background component due to charge cross-feed events. The $[p_{l}^{2}]$ distributions show the signal-emriched region with $m_{m_{cl}}^{2} \ge 1$ GeV², thus excluding most of the normalization events in three samples.

Y. Kwon (Yonsei Univ.)

Study of B decays with missing-E at B-factories

Y. Kwon (Yonsei Univ.)

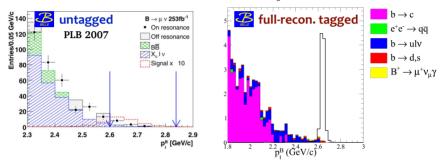
Study of B decays with missing-E at B-factories

Search for $B^+ \rightarrow \ell^{\pm} \nu_{\ell}$

(experimental) very clean

- just a charged lepton and nothing else
- (theoretical) suppressed
 - helicity suppression: ${\cal B} \propto m_{
 ho}^2$

 $\Gamma(B^+ \to e^+ \nu) \ll \Gamma(B^+ \to \mu^+ \nu) \ll \Gamma(B^+ \to \tau^+ \nu)$

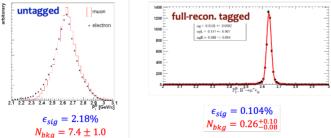

$B^+ ightarrow \ell^+ u_\ell$ tagged vs. untagged

$\Gamma(e^+ u_e)/\Gamma_{ m total}$					Г ₂₇ /Г	
VALUE (units 10 ⁻⁶)	CL%	DOCUMENT ID	TECN	COMMENT		
< 0.98	90	¹ SATOYAMA	07 BELL	$e^+ e^- \rightarrow \gamma$	` (4 <i>S</i>)	untagged
• • • We do not use the	e following	data for averages	, fits, limits, e	etc. • • •	. ,	
< 8	90	¹ AUBERT	10E BABR	$e^+ e^- \rightarrow \gamma$	<u>(45)</u>	
< 1.9	90	¹ AUBERT	09∨ BABR	$e^+ e^- \rightarrow \gamma$	(45)	untagged
< 5.2	90			$e^+ e^- \rightarrow \gamma$		full-recon.
$\frac{\Gamma(\mu^+\nu_{\mu})}{V_{LUE} \text{ (units } 10^{-6})} < 1.0$	<u>CL%</u> 90 use the follo	¹ AUBERT	09∨ B	$\frac{ECN}{ABR} = \frac{COMMEI}{e^+e^-}$	$\rightarrow \Upsilon(4S)$	untagged

<11	90	¹ AUBERT	10E BABR e^+	$e^- \rightarrow \Upsilon(4S)$	
< 5.6	90	¹ AUBERT	08AD BABR e^+	$e^- \rightarrow \Upsilon(4S)$	full-recon.
< 1.7	90	¹ SATOYAMA	07 BELL e ⁺	$e^- ightarrow ~\Upsilon(4S)$	untagged

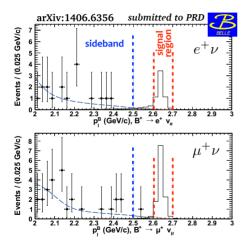
Why 'tagged' for $B^+ \rightarrow \ell^+ \nu_\ell$?

- The signal lepton candidate's momentum in Bsia rest frame. -



• an order-of-magnitude better resolution of p_{ℓ}^{B} with the full-recon. tagging

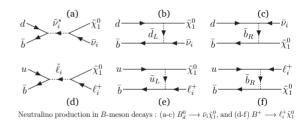
• But, does it make a case for 'full-recon-tagged' analysis of $B^+ \rightarrow \ell^+ \nu_\ell$?


Why 'tagged' for $B^+ \rightarrow \ell^+ \nu_{\ell}$?

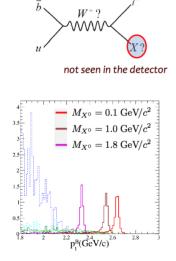
- Note: $\mathcal{B}_{SM}(B^+ \to e^+\nu_e) \sim 10^{-11}$ and $\mathcal{B}_{SM}(B^+ \to \mu^+\nu_\mu) \sim 3 \times 10^{-7}$ \Rightarrow Any signal for $B^+ \to e^+\nu_e$ at the Belle (or Belle II) sensitivity is way beyond the SM
- In that case, are we *sure* what we see is *really* $B^+ \rightarrow e^+ \nu_e$?
- What about $B^0 \rightarrow e^+\tau^-$? How about $B^+ \rightarrow e^+X^0$ where X^0 is any exotic neutral particle that just behaves like a neutrino?

• With full-recon., p_{ℓ}^{B} resolution is sharp enough to discern many such cases

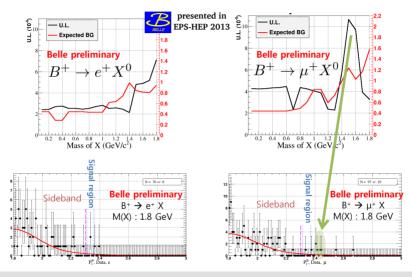
$B^+ \rightarrow \ell^+ \nu_\ell$ results (Belle)


Mode	$\epsilon_{\rm s}$ [%]	$N_{\rm obs}$	$N_{\mathrm{exp}}^{\mathrm{bkg}}$
$B^+ \to e^+ \nu$	0.086	0	0.10 ± 0.04
$B^+ \to \mu^+ \nu$	0.102	0	$0.26\substack{+0.09\\-0.08}$

$$\begin{split} \mathcal{B}(B^+ \to e^+ \nu_e) < 3.4 \times 10^{-6} \\ \mathcal{B}(B^+ \to \mu^+ \nu_\mu) < 2.7 \times 10^{-6} \end{split}$$

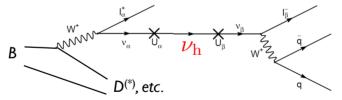

both @ 90% CL w/ Feldman-Cousins method

$B^+ ightarrow \ell^+ X^0$


 Search for massive neutral invisible fermion X⁰ Dedes, Dreiner, Richardson, PRD 65, 015001 (2001)
 B_{RPV} ~ O(10⁻⁷)

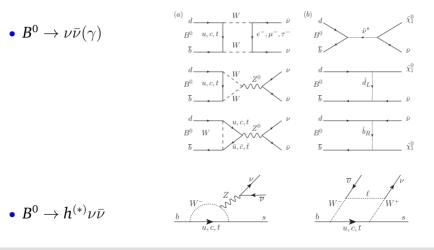
- Experimentally, very similar to $B^+ o \ell^+
 u_\ell$
- But, p_{ℓ}^{B} gives a handle on M_{X}

 $B^+ \rightarrow \ell^+ X^0$ Results


Y. Kwon (Yonsei Univ.)

Study of B decays with missing-E at B-factories

Heavy ν search (Belle)


See back-up slides for this!

• Search for $B \to (X)\ell_2^+\nu_h$ with $\nu_h \to \ell_1^{\pm}\pi^{\mp}$. If ν_h is of Dirac type, $\nu_h \to \ell_1^-\pi^+$.

(semi-)invisible *B* modes (*BABAR*/Belle)

See back-up slides for these modes!

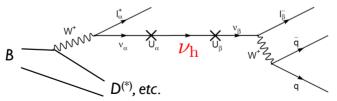
Study of B decays with missing-E at B-factories

Closing words

- The production mechanism of *B* mesons in the e^+e^- *B*-factories make it possible to study *B* decay modes with large missing energies.
 - * Techniques of tagging hadronic or semi-leptonic *B* decay modes has been greatly improved and exploited. They will become even more powerful tools for Belle II.
- Many interesting results on leptonic *B* decays (including *B* → D^(*)τ⁺ν_τ), with a large missing energy due to missing neutrino(s), are available from Belle and BABAR.
 - * Great sensitivity to NP (complementary to LHC), especially for H^+
 - * Stay tuned for updated $B \rightarrow D^{(*)} \tau^+ \nu_{\tau}$ from Belle!

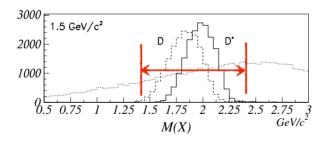
Back-up materials

Y. Kwon (Yonsei Univ.)

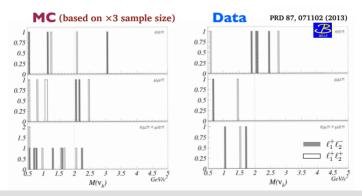

Study of B decays with missing-E at B-factories E

BEAUTY 2014, July 14, 2014 30

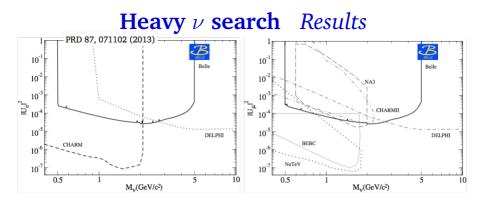
Heavy ν search


• Motivation

- Within the minimal SM, \exists no place for ν_R . But with ν oscillations, we need ν_R for $m_{\nu} \neq 0$. In what capacity do we have it?
- Heavy neutrinos (" ν_h ") appear in many BSM hypotheses. The ν_h 's might even be of Majorana type.
- Search for $B \to (X)\ell_2^+\nu_h$ with $\nu_h \to \ell_1^\pm \pi^\pm$. If ν_h is of Dirac type, $\nu_h \to \ell_1^- \pi^+$.


Heavy ν search (Belle)

- Separately for large and small $M(\nu_h)$
 - * "small" $M(\nu_h) < 2.0 \text{ GeV}/c^2$: $X = D, D^*$ only $D^{(*)}$ is identified by "missing mass": $M_X^2 \equiv (E_{CM} - E_{\ell_1 \ell_2 \pi})^2 - P_{\ell_1 \ell_2 \pi}^2 - P_B^2$
 - * "large" $M(\nu_{\rm h}) \geq 2.0~{\rm GeV}/c^2$: $X = D^{(*)}$, light meson, "nothing"


Heavy ν search (Belle) Results

mode	MC expected	Data
$ee\pi$	1.7 ± 0.7	6 ± 2.4
$\mu\mu\pi$	2.3 ± 0.9	2 ± 1.4
$e\mu\pi + \mu e\pi$	4.0 ± 1.2	3 ± 1.7

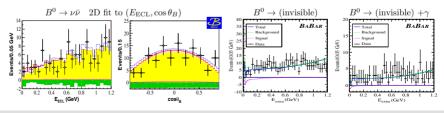
Y. Kwon (Yonsei Univ.)

Study of B decays with missing-E at B-factories

- Upper limits on ν_h − ν_ℓ mixing (|U_ℓ|²) are obtained, in the range 0.5 < M(ν_h) < 5 GeV/c².
 Maximum sensitivity is reached at M(ν_h) ~ 2 GeV/c².
- Upper limit for product branching fraction (for $M(\nu_h) = 2 \text{ GeV}/c^2$): $\mathcal{B}(B \to \ell_2 \nu_h(X)) \times \mathcal{B}(\nu_h \to \ell_1 \pi) < 7.2 \times 10^{-7} \text{ for } \ell = e, \ \mu.$

Y. Kwon (Yonsei Univ.)

$B^0 ightarrow u ar{ u}(\gamma)$


- (SM) strongly helicity-suppressed by $\mathcal{O}(m_{\nu}^2/m_B^2)$ $\mathcal{B}_{\rm SM}(B^0 \to \nu \bar{\nu}) \sim \mathcal{O}(10^{-20})$
- NP models predict significant branching fractions, e.g. $10^{-7} < B(B^0 \rightarrow \overline{\nu} \tilde{\chi}_1^0) < 10^{-6}$ Ded

Buchalla, Buras, NPB 400, 225 (1993)

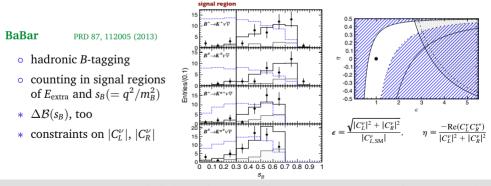
Dedes, Dreiner, Richardson, PRD 65, 015001 (2001)

• Results (upper limits @ 90% CL)

mode	${\cal B}$ (in 10^{-5})	note	ref.
$B^0 o u ar{ u}$	< 13	Belle, hadronic B-tag	PRD 86, 032002 (2012)
	< 2.4	BaBar, $B^0 \rightarrow D^{(*)} - \ell^+ \nu$ tag	PRD 86, 051105 (2012)
$B^0 ightarrow u ar{ u} \gamma$	< 1.7	BaBar, $B^0 \rightarrow D^{(*)} - \ell^+ \nu$ tag	PRD 86, 051105 (2012)

Y. Kwon (Yonsei Univ.)

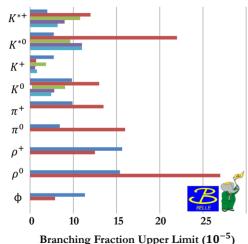
Study of B decays with missing-E at B-factories


 $B^0 \rightarrow h^{(*)} \nu \overline{\nu}$

Expected theory

• (SM) $\mathcal{B}(B \to K \nu \overline{\nu}) = (4.5 \pm 0.7) \times 10^{-6}$ $\mathcal{B}(B \to K^* \nu \overline{\nu}) = (3.8^{+1.2}_{-0.6}) \times 10^{-6}$

Altmannshofer, et al., JHEP 0904:022 (2009)


• many NP models (e.g. unparticle, SUSY at large tan β , models with scalar WIMP, etc.) predict $\mathcal{B} \sim \mathcal{O}(10) \times \mathcal{B}_{SM}$

Y. Kwon (Yonsei Univ.)

Study of B decays with missing-E at B-factories

$B^0 ightarrow h^{(*)} u ar{ u}$

Belle 2013, 772M $B\overline{B}$, Had. Belle 2007, 535M $B\overline{B}$, Had.

Babar 2013, 471M *BB*, Had. Babar, 08' 10', ~460M *BB*, SL. Babar, Combined.

Had. : Hadronic Tagging Method SL. : Semi-leptonic Tagging Method

Belle 2007 : PRL 99, 221802 (2007). Babar 08' : PRD 78, 072007 (2008). Babar 10' : PRD 82, 112002 (2010).

Belle 2013 : PRD 87, 111103 BaBar 2013 : PRD 87, 112005

* Belle 2013 supersede Belle 2007

Summary plot from Y. Yook talk @FPCP 2013.