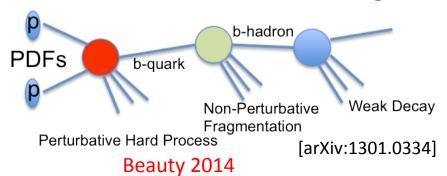
B^0 and B_s^0 production asymmetries and Λ^0_b production at LHCb

Maria Zangoli On behalf of the LHCb Collaboration


Beauty 2014 – Edinburgh 14 July 2014

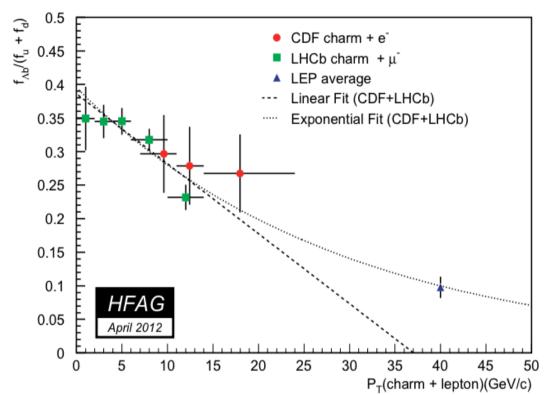
Introduction

- A precise understanding of the mechanisms of Heavy Flavour production can be viewed as one of the ultimate tests of QCD
- It allows us to probe our knowledge of the fundamental constituents of matter and their interactions
- Measurements in this field can provide useful tests of QCD, and give input for tuning models, and refining event generators
- Measurements at LHCb have a great potential to constraints models in regions of rapidity and transverse momentum complementary to other LHC detectors.
- Today

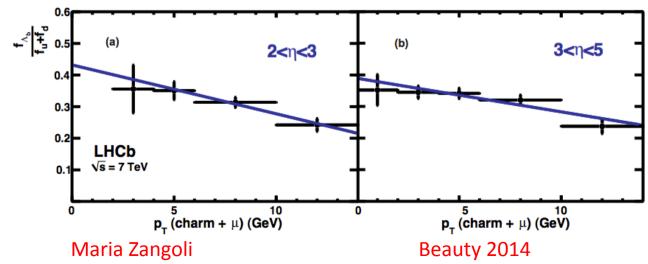
Maria Zangoli

- Measurement of Λ_b^0 production in pp collisions [submitted to JHEP, arXiv:1405.6842]
- Measurement of the B^0 $\overline{B^0}$ and B^0_s $\overline{B^0}_s$ production asymmetries in 7 TeV pp collision [LHCb-PAPER-2014-042, to be submitted for publication] **NEW**
- Fundamental ingredients for CP violation and branching fraction measurements

2/17


Measurement of Λ_b^0 production

- The relative production rates of beauty hadrons are described by fragmentation fraction f_u , f_d , f_s , f_c and $f_{\Lambda_b^o}$ which describe the probability that a b quark fragments into a $B_{q=u,d,s,c}$ meson or a Λ_b^0 baryon respectively
 - Depend on the kinematic proprieties of the b quark
- $f_{\Lambda_b^0}/f_d$ is measured using $\Lambda_b^0 \to \Lambda_c^+(pK^-\pi^+)\pi^-$ and $B^0 \to D^+(K^+\pi^-\pi^-)\pi^-$ (and their charge conjugates) decay rates
 - data set collected by LHCb in 2011, $\sqrt{s} = 7$ TeV, corresponding to 1 fb⁻¹ of integrated luminosity
- The analysis aims to clarify the extent and characteristics of the p_T dependences of $f_{\Lambda_b^0}/f_d$ and study the η dependences in the fiducial region 1.5 < p_T < 40 GeV/c and 2 < η < 5


Maria Zangoli Beauty 2014 3/17

Previous knowledge

- Previous measurements of $f_{\Lambda_b^o}/f_d$ have been made in
 - e⁺e⁻ collisions at LEP [HFAG, arXiv:1207.1158v2]
 - pp̄ collisions at CDF
 [Phys. Rev. D 77, 072003 (2008),
 Phys. Rev. D 79, 032001 (2009]
 - pp collisions at LHCb[Phys. Rev. D85 032008 (2012)]

LHCb: semi-leptonic measurement [Phys. Rev. D85 032008 (2012)]

 $\Lambda_b \rightarrow \Lambda_c^- \mu^+ \nu X$, $B^0 \rightarrow D^- \mu^+ \nu X$ 2010 dataset $3pb^{-1}$

Analysis strategy

- A precise measurement of the absolute value of $f_{\Lambda_b^0}/f_d$ is not feasible with these decays, since the $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ branching fraction is poorly known
- However a precise measurement of the dependence of $f_{\Lambda_b^0}/f_d$ on the b-hadron kinematic properties is possible
- This is achieved by measuring the efficiency-corrected yield ratio in bins of $p_{\scriptscriptstyle T}$ and η of the beauty hadron

$$\mathcal{R}(x) \equiv \frac{N_{A_b^0 \to A_c^+\pi^-}(x)}{N_{\overline{B}^0 \to D^+\pi^-}(x)} \times \frac{\varepsilon_{\overline{B}^0 \to D^+\pi^-}(x)}{\varepsilon_{A_b^0 \to A_c^+\pi^-}(x)} \qquad \text{Total reconstruction and selection efficiency}$$

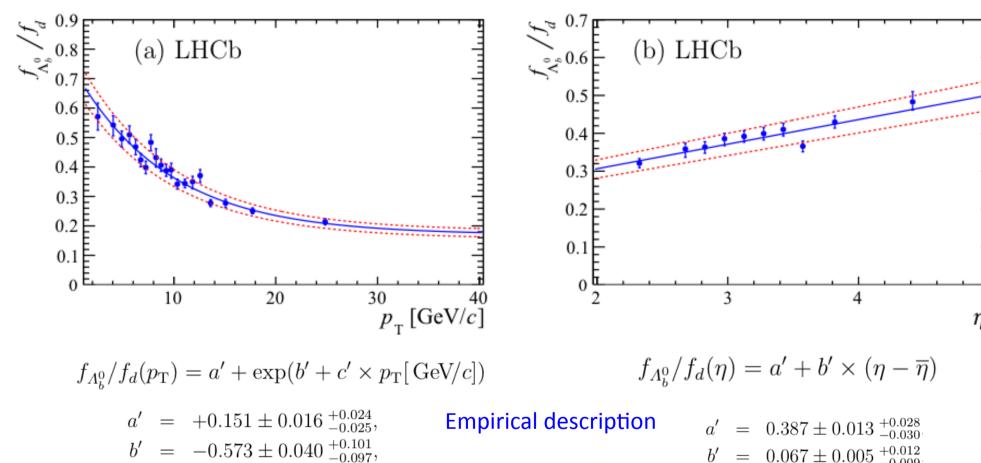
$$\mathbf{X} = \mathbf{p_T} \text{, } \mathbf{\eta}$$

$$\mathbf{X} = \mathbf{p_T} \text{, } \mathbf{\eta}$$

$$\mathbf{X} = \mathbf{p_T} \text{, } \mathbf{\eta}$$


$$\begin{bmatrix}
f_{A_b^0} \\
f_d
\end{bmatrix} = \frac{\mathcal{B}(\overline{B}^0 \to D^+ \pi^-)}{\mathcal{B}(A_b^0 \to A_c^+ \pi^-)} \times \frac{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)}{\mathcal{B}(A_c^+ \to pK^- \pi^+)} \times \mathcal{R}(x)$$

$$\equiv \underbrace{\mathcal{S} \times \mathcal{R}(x),} \text{ scale factor}$$


The absolute scale (S) of $f_{\Lambda_b^0}/f_d$ is fixed using the measurement of $f_{\Lambda_b^0}/f_d$ from semileptonic b-hadron decays [Phys. Rev. D85 032008 (2012)]

Maria Zangoli Beauty 2014 5/17

- The event sample is sub-divided in 20 bins in p_T and 10 bins in η
- The yields are determined by means of an unbinned maximum likelihood fit to the invariant mass in each bin of $p_{\scriptscriptstyle T}$ and η

 $b' = 0.067 \pm 0.005 ^{+0.012}_{-0.009}$

- The error bars include the statistical and systematic uncertainties associated with the hadronic measurement. The dashed red lines indicate the uncertainty on the scale of f_{Λ^0} / f_d from the semileptonic analysis.
- Systematic uncertainties are related to fitting model and determination of the efficiencies.

 $c' = -0.095 \pm 0.007 \pm 0.014 \, [\,\text{GeV}/c\,]^{-1}$

$\overline{B}^{0}_{(s)}$ - $B^{0}_{(s)}$ production asymmetries

- The production rates of b and \overline{b} hadrons in pp collisions at LHC are not expected to be strictly identical
 - One can expect a slight excess in the production of B^+ and B^0 over B^- and \overline{B}^0 , given rise to an asymmetry which must be compensated by an opposite asymmetry in the production of the other b-meson and baryon species
- The production asymmetry is one of the key ingredients to perform measurements of CP violation at LHC
- The production asymmetries for B⁰ and B⁰_s meson are defined as

$$A_{\mathrm{P}}\left(B_{(s)}^{0}\right) = \frac{\sigma\left(\overline{B}_{(s)}^{0}\right) - \sigma\left(B_{(s)}^{0}\right)}{\sigma\left(\overline{B}_{(s)}^{0}\right) + \sigma\left(B_{(s)}^{0}\right)} \qquad \text{o is the production cross-section}$$

- $A_p(B^0_{(s)})$ can be measured by means of an untagged time-dependent analysis of $B^0 \rightarrow J/\Psi(\mu^+\mu^-)K^{*0}(K^+\pi^-)$, $B^0 \rightarrow D^-(K^+\pi^-\pi^-)$ π^+ and $B^0_s \rightarrow D^-_s(K^-K^+\pi^-)$ π^+ decays (and their charge conjugates)
- The analysis is based on data collected by LHCb in 2011, corresponding to 1 fb⁻¹ of integrated luminosity

Maria Zangoli Beauty 2014 8/17

The method

• Decay rate of a neutral $B_{(s)}^0$ - $\overline{B}_{(s)}^0$ decays to a flavour specific final state f or \overline{f} is given by

state f or
$$\overline{f}$$
 is given by
$$f\left(t,\psi\right) \propto \left(1-\psi A_{CP}\right) \left(1-\psi A_{f}\right) \qquad \Delta_{CP} \qquad \text{Direct CP asymmetry}$$

$$\left\{e^{-\Gamma t} \left[\Lambda_{+} \cosh\left(\frac{\Delta\Gamma t}{2}\right) + \psi \Lambda_{-} \cos\left(\Delta m t\right)\right]\right\}$$

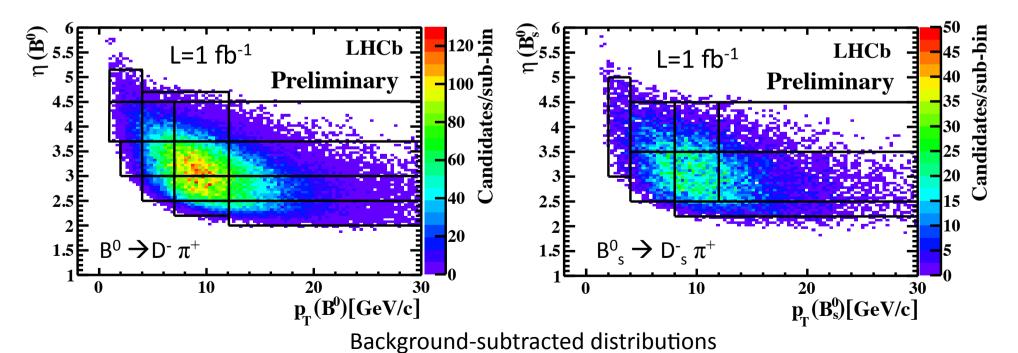
$$\psi \Rightarrow \text{final state}$$

$$\Lambda_{\pm} = \left(1-A_{P}\right) \left|\frac{q}{p}\right|^{1-\psi} \pm \left(1+A_{P}\right) \left|\frac{q}{p}\right|^{-1-\psi} \qquad \psi = 1 \Rightarrow f$$

$$\psi = -1 \Rightarrow \overline{f}$$

for small values of A_{CP} and A_f, to first order the decay rate is

$$f(t,\psi) \propto \left[1 - \psi \left(A_{CP} + A_{f}\right)\right] \cdot e^{-\Gamma \cdot t} \cdot \left[\Lambda_{+} \cosh\left(\frac{\Delta \Gamma \cdot t}{2}\right) + \psi \Lambda_{-} \cos\left(\Delta m \cdot t\right)\right]$$

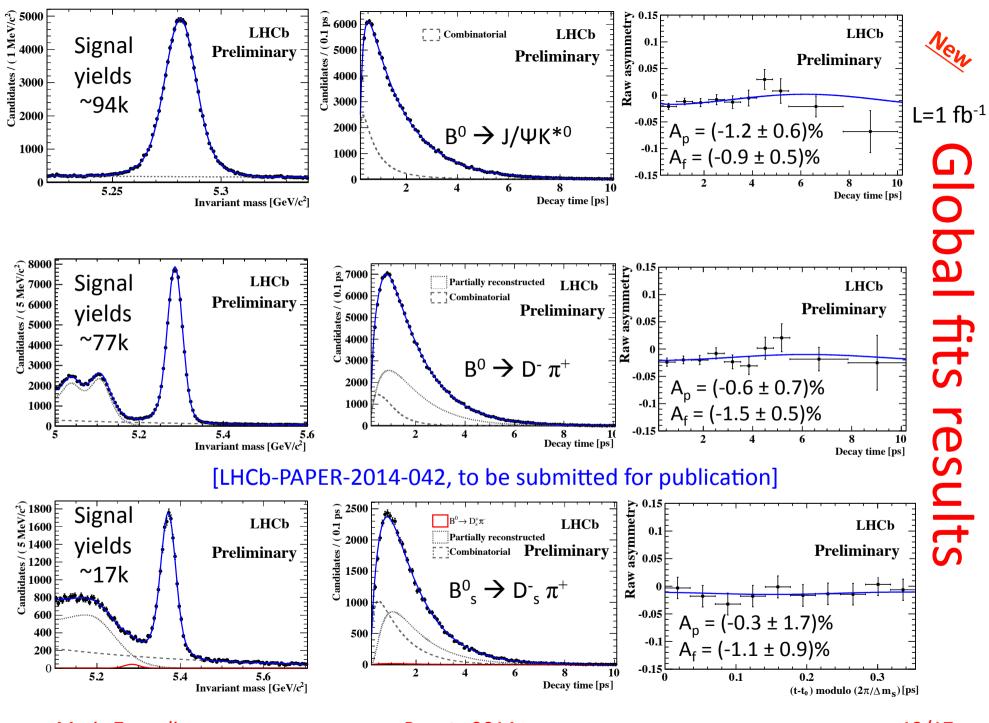

9/17

- it is sensitive to the sum of these two quantities. We fix A_{CP} to zero, whereas A_f is left as a free parameter.
- Any choice (up to few %) of A_{CP} → negligible variation on A_P
 Maria Zangoli Beauty 2014

Determination of the production asymmetries

[LHCb-PAPER-2014-042, to be submitted for publication]

- The production asymmetries are determined by means of simultaneous fits to the invariant mass and decay time spectra.
- To test the fit model, we perform global fits to selected events for each of the three decay modes
- In order to account for the dependence of the values of the production asymmetries on the kinematics of the B^0 and B^0_s mesons, we split each data sample in bins of p_T and p_T and p_T performing fits for each bin.

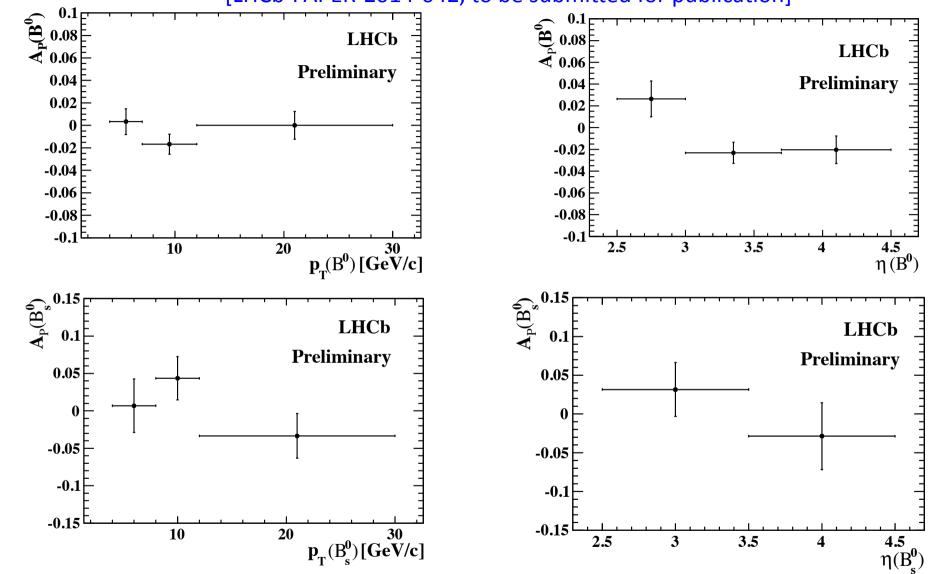


Maria Zangoli Beauty 2014 10/17

Fitting model

- For each signal and background component, the distributions of invariant mass and decay time of b-meson candidates are modelled
- We consider two categories of background:
 - the combinatorial background
 - the partially reconstructed background, present only for $B^0_{(s)} \rightarrow D^-_{(s)} \pi^+$ decays.
- Decay time resolution studied by reconstructing fake B candidates that are formed from a D $^-$ and a π^+ track, both coming from the same PV
 - The decay time distribution of the fake B candidates yields an estimation of the decay time resolution of a real decay
 - We estimate an average decay time resolution of 49±8 fs
- The mass differences Δm_d and Δm_s , the mixing parameters $|q/p|_{B_0}$ and $|q/p|_{B_s^0}$, the average decay widths Γ_d and Γ_s , and the width differences $\Delta \Gamma_d$ and $\Delta \Gamma_s$ are fixed to the current experimental values

Maria Zangoli Beauty 2014 11/17


Maria Zangoli Beauty 2014 12/17

L=1 fb⁻¹

Production asymmetries vs p_T and η

[LHCb-PAPER-2014-042, to be submitted for publication]

No evidence of dependences on the values of p_T and η has been observed In the case of the B^0 meson, a slight excess towards positive A_p values is observed at small η

Systematic uncertainties

- We consider the following sources of systematic uncertainties
 - Invariant mass: inaccuracies in the shapes of any component, signals, combinatorial and partially reconstructed backgrounds
 - decay time: inaccuracies in the resolution and acceptance functions, uncertainties on the external inputs
- To estimate the contribution of each single source we repeat the fit for each single bin after having modified the baseline fit model.
 - The shifts from the relevant baseline values are accounted for as systematic uncertainties
- Main systematic for B⁰: uncertainty of |q/p| and invariant mass fitting model
 - within range 5-10% of statistical error
- Main systematic for B_s^0 : uncertainty of |q/p| and decay time resolution
 - within range 15-25% of statistical error

Averaged production asymmetries

- The integration over p_T and η of the bin-by-bin A_p value is performed within the range $4 < p_T < 30$ GeV/c and $2.5 < \eta < 4.5$.
- The integrated value of A_P is given by

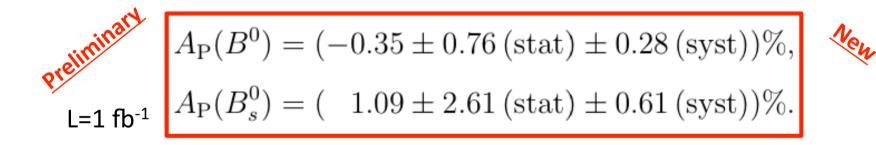
$$A_{ ext{P}} = rac{\sum_i rac{N_i}{arepsilon_i} A_{ ext{P},i}}{\sum_i rac{N_i}{arepsilon_i}}$$

The signal yields in each bin can be expressed as

$$N_i = \mathcal{L} \cdot \sigma_{b\bar{b}} \cdot 2 \cdot f_{b(s)} \cdot \mathcal{B} \left(f_i \right) \varepsilon_i$$

total reconstruction efficiency in the i-th bin

fraction of B meson produced in i-th bin


and A_P becomes $A_P = \sum_i \omega_i A_{P,i}$ where $\omega_i = f_i / \sum_i f_i$ and are determined from simulated events (independent from decay mode)

- These values are also extracted from data using $B^0 \rightarrow J/\psi K^{*0} \rightarrow \omega_i^{\text{data}} = \frac{N_i}{\varepsilon_i^{\text{rec}}} / \sum_i \frac{N_i}{\varepsilon_i^{\text{rec}}}$ where ε_{rec} is measured from both simulated events and data control samples
- The values of ω_i and ω_i^{data} exhibit systematic difference at the level of 10%

Maria Zangoli Beauty 2014 15/17

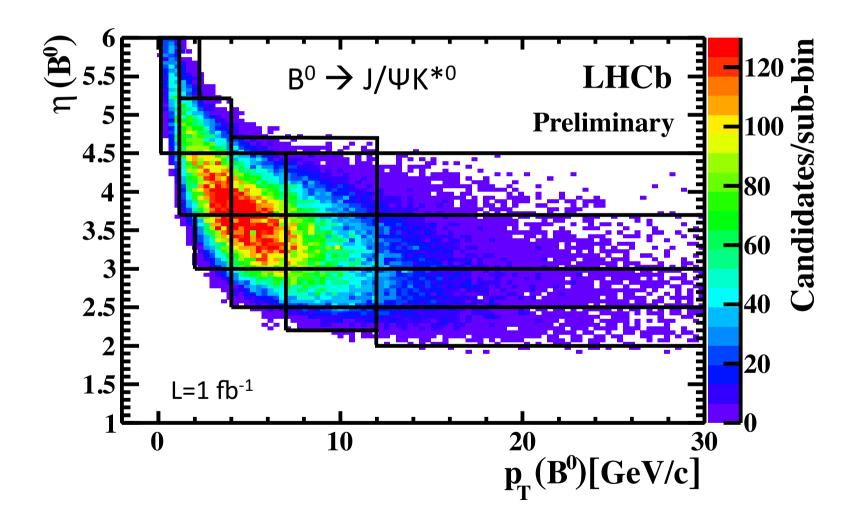
Averaged production asymmetries

 The values of the production asymmetries integrated in the ranges $4 < p_T < 30$ GeV/c and $2.5 < \eta < 4.5$ have been determined to be

	$A_{\mathbf{P}}(B^{0})$	$A_{\mathbf{P}}(B_{s}^{0})$
Combined systematic uncertainties from bin studies	0.0004	0.0048
Statistical uncertainties on $ q/p $	0.0013	0.0030
Difference between ω_i and ω_i^{data}	0.0024	0.0024
Total	0.0028	0.0061

[LHCb-PAPER-2014-042, to be submitted for publication]

Summary


- With 1 fb⁻¹ of integrated luminosity LHCb has made
 - the first accurate measurements of the B^0 and B^0_s production asymmetries at $\sqrt{s}=7$ TeV
 - Confirmed with good precision the dependence of $f_{\Lambda_b^0}/f_d$ as function of kinematics
- Expected soon updated measurements at √s=8 TeV with 2 fb⁻¹

Maria Zangoli Beauty 2014 17/17

Backup

Parameter	Value	Reference
$\Delta m_d [\mathrm{ps}^{-1}]$	0.510 ± 0.004	[18]
$\Delta m_s [\mathrm{ps}^{-1}]$	17.768 ± 0.024	$[\overline{19}]$
$\Gamma_d [\mathrm{ps}]$	0.6583 ± 0.0030	$[\overline{18}]$
$\Gamma_s [\mathrm{ps}]$	0.6596 ± 0.0046	$[\overline{18}]$
$\Delta\Gamma_d$	0	
$\Delta\Gamma_s[\mathrm{ps}^{-1}]$	0.081 ± 0.011	[18]
$ q/p _{B^0}$	0.9997 ± 0.0013	[20]
$ q/p _{B_s^0}$	1.0003 ± 0.0030	[21]

- [18] Particle Data Group, J. Beringer et al., Review of particle physics, Phys. Rev. D86 (2012) 010001.
- [19] LHCb collaboration, R. Aaij et al., Precision measurement of the B_s^0 - \bar{B}_s^0 oscillation frequency with the decay $B_s^0 \to D_s^-\pi^+$, New J. Phys. 15 (2013) 053021, arXiv:1304.4741.
- [20] Heavy Flavor Averaging Group, Y. Amhis et al., Averages of b-hadron, c-hadron, and τ-lepton properties as of early 2012, arXiv:1207.1158, update available online at http://www.slac.stanford.edu/xorg/hfag.
- [21] LHCb collaboration, R. Aaij et al., Measurement of the flavour-specific CP-violating asymmetry $a_{\rm sl}^s$ in B_s^0 decays, arXiv:1308.1048.

