Rare semileptonic *b*-decays

Christoph Bobeth

TU Munich - IAS

Beauty 2014 Edinburgh

Outline

- Introduction to $b \rightarrow s \bar{\ell} \ell$ decays
 - ▶ Effective Theory (EFT) of $|\Delta B| = |\Delta S| = 1$ decays
- Observables in angular analyses
 - ▶ $B \to K^* \bar{\ell} \ell$ and $B \to K \bar{\ell} \ell$
- Theory of exclusive $b \rightarrow s \bar{\ell} \ell$ decays
 - ▶ $1/m_b$ expansions at low & high- q^2
 - Phenomenology
- Model-indep. Fits & New Physics Models

C. Bobeth Beauty 2014 July 17, 2014 2 / 33

Introduction to $b \rightarrow s \bar{\ell} \ell$ decays

B-Hadron decays are a Multi-scale problem ...

... with hierarchical interaction scales

electroweak IA $\qquad \gg \qquad$ ext. mom'a in B restframe $\qquad \gg \qquad$ QCD-bound state effects

 $M_W \approx 80 \text{ GeV}$ $M_B \approx 5 \text{ GeV}$ $M_Z \approx 91 \text{ GeV}$

 $\Lambda_{QCD}\approx 0.5~GeV$

C. Bobeth Beauty 2014 July 17, 2014 4 / 33

B-Hadron decays are a Multi-scale problem ...

.. with hierarchical interaction scales

electroweak IA

ext. mom'a in B restframe

 $M_W \approx 80 \text{ GeV}$ $M_Z \approx 91 \text{ GeV}$

 $M_B \approx 5 \text{ GeV}$

$$\mathcal{L}_{\text{eff}} \sim \textit{G}_{\textit{F}} \; \textit{V}_{\text{CKM}} \times \left[\sum_{9,10} \textit{C}_{\textit{i}}^{\ell \bar{\ell}} \; \mathcal{O}_{\textit{i}}^{\ell \bar{\ell}} + \sum_{7\gamma,\,8g} \textit{C}_{\textit{i}} \; \mathcal{O}_{\textit{i}} + \text{CC} + \left(\text{QCD \& QED-peng} \right) \right]$$

semi-leptonic

u,c,t

u.c.t

electro- & chromo-mgn

u.c.t

w s b u,c
u,c,t
w s

charged current

QCD & QED -penguin

C. Bobeth

Beauty 2014

July 17, 2014

4/33

B-Hadron decays are a Multi-scale problem ...

... with hierarchical interaction scales

electroweak IA

 \gg ext. mom'a in *B* restframe

 $M_W \approx 80 \text{ GeV}$ $M_Z \approx 91 \text{ GeV}$

 $M_B \approx 5 \text{ GeV}$

$$\mathcal{L}_{\text{eff}} \sim G_F \ \textit{V}_{\text{CKM}} \times \left[\sum_{9,10} \textit{C}_i^{\ell\bar{\ell}} \ \mathcal{O}_i^{\ell\bar{\ell}} + \sum_{7\gamma,\,8g} \textit{C}_i \ \mathcal{O}_i + \text{CC} + \left(\text{QCD \& QED-peng} \right) \right]$$

semi-leptonic

electro- & chromo-mgn

charged current

QCD & QED -penguin

 C_i = Wilson coefficients: contains short-dist. pmr's (heavy masses M_t, \ldots – CKM factored out) and leading logarithmic QCD-corrections to all orders in α_s

 \Rightarrow in SM known up to next-to-next-to-leading order

 O_i = higher-dim. operators: flavour-changing coupling of light quarks

C. Bobeth Beauty 2014 July 17, 2014 4 / 33

Most important operators in the SM (Standard Model) for $b \to s + (\gamma, \bar{\ell}\ell)$

C. Bobeth Beauty 2014 July 17, 2014 5 / 33

Most important operators in the SM (Standard Model) for $b \rightarrow s + (\gamma, \ell\ell)$

and other contributions from

$$b \rightarrow s + \overline{U}U \ (U = u, c)$$

QCD peng op's
$$b \rightarrow s + \overline{Q}Q \ (Q = u, d, s, c, b)$$

chromo-mgn op $b \rightarrow s + gluon$ ⇒ induce backgrounds

$$b \rightarrow s + (\overline{Q}Q) \rightarrow s + \overline{\ell}\ell$$

vetoed in exp's for Q = c: J/ψ and ψ'

C. Bobeth Beauty 2014 July 17, 2014 5/33

$$b \rightarrow s + (\gamma, \bar{\ell}\ell)$$
 operators beyond the SM . . .

... frequently considered in model-(in)dependent searches

SM' = χ -flipped SM analogues ($P_L \leftrightarrow P_R$)

$$\mathcal{O}_{7'\gamma} \; \propto \; m_b [\bar{s} \, \sigma_{\mu\nu} P_L \, b] F^{\mu\nu}, \qquad \qquad \mathcal{O}_{9'(10')}^{\ell\bar{\ell}} \; \propto \; [\bar{s} \, \gamma^\mu P_R \, b] [\bar{\ell} \, \gamma_\mu (\gamma_5) \, \ell]$$

S + P = scalar + pseudoscalar

$$\mathcal{O}_{S(S')}^{\ell\bar{\ell}} \; \propto \; [\bar{s} \, P_{R(L)} \, b][\bar{\ell} \, \ell], \qquad \qquad \mathcal{O}_{P(P')}^{\ell\bar{\ell}} \; \propto \; [\bar{s} \, P_{R(L)} \, b][\bar{\ell} \, \gamma_5 \, \ell]$$

T + T5 = tensor

$$\mathcal{O}_{T}^{\ell\bar{\ell}} \propto [\bar{s}\,\sigma_{\mu\nu}\,b][\bar{\ell}\,\sigma^{\mu\nu}\,\ell], \qquad \qquad \mathcal{O}_{T5}^{\ell\bar{\ell}} \propto \frac{i}{2}\,\varepsilon^{\mu\nu\alpha\beta}[\bar{s}\,\sigma_{\mu\nu}\,b][\bar{\ell}\,\sigma_{\alpha\beta}\,\ell]$$

new Dirac-structures beyond SM:

SM' = right-handed currents

S + P = scalar-exchange & box-type diagrams

T + T5 = box-type diagrams, Fierzed scalar tree exchange

C. Bobeth Beauty 2014 July 17, 2014 6 / 33

Extension of EFT beyond the SM ...

$$\mathcal{L}_{\text{eff}}(\mu_b) = \mathcal{L}_{\text{QED}\times\text{QCD}}(u, d, s, c, b, e, \mu, \tau, ???)$$

$$+ \frac{4G_F}{\sqrt{2}} V_{\text{CKM}} \sum_{\text{SM}} (C_i + \Delta C_i) \mathcal{O}_i + \sum_{\text{NP}} C_j \mathcal{O}_j (???)$$

 ΔC_i = NP contributions to SM C_i

 $\sum_{NP} C_j \mathcal{O}_j$ = NP operators (e.g. $C'_{7,9,10}, C^{(')}_{S,P}, \ldots$)

???? = additional light degrees of freedom (<= usually not pursued)

C. Bobeth Beauty 2014 July 17, 2014 7 / 33

Extension of EFT beyond the SM ...

$$\mathcal{L}_{\text{eff}}(\mu_b) = \mathcal{L}_{\text{QED} \times \text{QCD}}(u, d, s, c, b, e, \mu, \tau, ???)$$

$$+ \frac{4G_F}{\sqrt{2}} V_{\text{CKM}} \sum_{\text{SM}} (C_i + \Delta C_i) \mathcal{O}_i + \sum_{\text{NP}} C_j \mathcal{O}_j (???)$$

 ΔC_i = NP contributions to SM C_i

 $\sum_{NP} C_j \mathcal{O}_j$ = NP operators (e.g. $C'_{7,9,10}, C^{(')}_{S,P}, \ldots$)

??? = additional light degrees of freedom (<= usually not pursued)

- model-dep. 1) decoupling of new heavy particles @ NP scale: $\mu_{NP} \gtrsim M_W$
 - 2) RG-running to lower scale $\mu_b \sim m_b$ (potentially tower of EFT's)
 - C_i are correlated \Rightarrow depend on fundamental parameters

model-indep. extending SM EFT-Lagrangian \rightarrow new C C_i are UN-correlated free parameters

Extension of EFT beyond the SM ...

$$\mathcal{L}_{\text{eff}}(\mu_b) = \mathcal{L}_{\text{QED} \times \text{QCD}}(u, d, s, c, b, e, \mu, \tau, ???)$$

$$+ \frac{4G_F}{\sqrt{2}} V_{\text{CKM}} \sum_{\text{SM}} (C_i + \Delta C_i) \mathcal{O}_i + \sum_{\text{NP}} C_j \mathcal{O}_j (???)$$

 ΔC_i = NP contributions to SM C_i

 $\sum_{NP} C_j \mathcal{O}_j$ = NP operators (e.g. $C'_{7,9,10}, C^{(')}_{S,P}, \ldots$)

???? = additional light degrees of freedom (<= usually not pursued)

- model-dep. 1) decoupling of new heavy particles @ NP scale: $\mu_{NP} \gtrsim M_W$
 - 2) RG-running to lower scale $\mu_b \sim m_b$ (potentially tower of EFT's)
 - C_i are correlated \Rightarrow depend on fundamental parameters

model-indep. extending SM EFT-Lagrangian \rightarrow new C_j

C_i are UN-correlated free parameters

C. Bobeth Beauty 2014 July 17, 2014 7 / 33

Observables in angular analyses

Experimental data: $b \rightarrow s(d) \bar{\ell} \ell$ – number of events

# of evts	BaBar	Belle	CDF	LHCb	CMS	ATLAS
	2012	2009	2011	2011 (+2012)	2011 (+2012)	2011
	471 M <i>BB</i>	605 fb ⁻¹	9.6 fb ⁻¹	1 (+2) fb ⁻¹	5 (+20) fb ⁻¹	5 fb ⁻¹
$B^0 \to K^{*0} \bar{\ell} \ell$	$137 \pm 44^{\dagger}$	$247 \pm 54^{\dagger}$	288 ± 20	2361 ± 56	415 ± 70	426 ± 94
$B^+ o K^{*+} \bar{\ell} \ell$			24 ± 6	162 ± 16		
$B^+ o K^+ ar{\ell} \ell$	153 ± 41 [†]	$162\pm38^{\dagger}$	319 ± 23	4746 ± 81	not yet	not yet
$B^0 \to K_S^0 \bar{\ell}\ell$			32 ± 8	176 ± 17		
$B_{\mathcal{S}} \rightarrow \phi \bar{\ell} \ell$			62 ± 9	174 ± 15		
$B_{s} \rightarrow \bar{\mu}\mu$				emerging	emerging	limit
$\Lambda_b \to \Lambda \bar{\ell} \ell$			51 ± 7	78 ± 12		
$B^+ o \pi^+ \bar{\ell} \ell$		limit		25 ± 7		
$B_d \rightarrow \bar{\mu}\mu$			limit	limit	limit	limit

- CP-averaged results
- ▶ J/ψ and ψ' q^2 -regions vetoed
- ightharpoonup † unknown mixture of B^0 and B^{\pm}
- \blacktriangleright ℓ = μ for CDF, LHCb, CMS, ATLAS

Babar arXiv:1204.3933 + 1205.2201

Belle arXiv:0904.0770

CDF arXiv:1107.3753 + 1108.0695 + Public Note 10894

LHCb arXiv:1205.3422 + 1209.4284 + 1210.2645 + 1210.4492

+ 1304.6325 + 1305.2168 + 1306.2577 + 1307.5024 + 1307.7595 + 1308.1340 + 1308.1707 + 1403.8044

+ 1403.8045 + 1406.6482 CMS arXiv:1307.5025 + 1308.3409

ATLAS ATLAS-CONF-2013-038

C. Bobeth Beauty 2014 July 17, 2014 9 / 33

Experimental data: $b \rightarrow s(d) \bar{\ell} \ell$ – number of events

# of evts	BaBar	Belle	CDF	LHCb	CMS	ATLAS
	2012	2009	2011	2011 (+2012)	2011 (+2012)	2011
	471 M <i>BB</i>	605 fb ⁻¹	9.6 fb ⁻¹	1 (+2) fb ⁻¹	5 (+20) fb ⁻¹	5 fb ⁻¹
$B^0 \to K^{*0} \bar{\ell}\ell$	$137 \pm 44^{\dagger}$	$247 \pm 54^\dagger$	288 ± 20	2361 ± 56	415 ± 70	426 ± 94
$B^+ o K^{*+} \bar{\ell} \ell$			24 ± 6	162 ± 16		
$B^+ o K^+ ar{\ell} \ell$	153 ± 41 [†]	$162\pm38^{\dagger}$	319 ± 23	4746 ± 81	not yet	not yet
$B^0 \to K_S^0 \bar{\ell} \ell$			32 ± 8	176 ± 17		
$B_s \rightarrow \phi \bar{\ell} \ell$			62 ± 9	174 ± 15		
$B_{s} \rightarrow \bar{\mu}\mu$				emerging	emerging	limit
$\Lambda_b \to \Lambda \bar{\ell} \ell$			51 ± 7	78 ± 12		
$B^+ \to \pi^+ \bar{\ell} \ell$		limit		25 ± 7		
$B_d \rightarrow \bar{\mu} \mu$			limit	limit	limit	limit

Outlook / Prospects

Belle reprocessed all data 711 fb⁻¹ \rightarrow no final analysis yet!

LHCb $\sim 2 \text{ fb}^{-1}$ from 2012 to be analysed and $\gtrsim 8 \text{ fb}^{-1}$ by the end of 2018

ATLAS / CMS ~ 20 fb⁻¹ from 2012 to be analysed

Belle II expects about (10-15) K events $B \to K^* \bar{\ell} \ell$ ($\gtrsim 2020$)

[Bevan arXiv:1110.3901]

C. Bobeth Beauty 2014 July 17, 2014 9 / 33

4-body decay with on-shell \overline{K}^* (vector)

1)
$$q^2 = m_{\bar{\ell}\ell}^2 = (p_\ell + p_{\bar{\ell}})^2 = (p_{\bar{B}} - p_{\bar{K}^*})^2$$

- 2) $\cos\theta_{\ell}$ with $\theta_{\ell} \angle (\vec{p}_{\bar{B}}, \vec{p}_{\ell})$ in $(\bar{\ell}\ell)$ c.m. system
- 3) $\cos \theta_K$ with $\theta_K \angle (\vec{p}_{\bar{B}}, \vec{p}_{\bar{K}})$ in $(\bar{K}\pi)$ c.m. system

4)
$$\phi \angle (\vec{p}_{\bar{K}} \times \vec{p}_{\pi}, \vec{p}_{\bar{\ell}} \times \vec{p}_{\ell})$$
 in *B*-RF

C. Bobeth Beauty 2014 July 17, 2014 10 / 33

4-body decay with on-shell \overline{K}^* (vector)

1)
$$q^2 = m_{\bar{\ell}\ell}^2 = (p_\ell + p_{\bar{\ell}})^2 = (p_{\bar{B}} - p_{\bar{K}^*})^2$$

- 2) $\cos\theta_{\ell}$ with $\theta_{\ell} \angle (\vec{p}_{\bar{B}}, \vec{p}_{\ell})$ in $(\bar{\ell}\ell)$ c.m. system
- 3) $\cos \theta_{K}$ with $\theta_{K} \angle (\vec{p}_{\bar{B}}, \vec{p}_{\bar{K}})$ in $(\bar{K}\pi)$ c.m. system

4)
$$\phi \angle (\vec{p}_{\bar{K}} \times \vec{p}_{\pi}, \vec{p}_{\bar{\ell}} \times \vec{p}_{\ell})$$
 in *B*-RF

$$J_i(q^2)$$
 = "Angular Observables"

$$\frac{32\pi}{9} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2 \operatorname{dcos} \theta_\ell \operatorname{dcos} \theta_K \operatorname{d}\phi} = \frac{J_{1s} \sin^2 \theta_K + J_{1c} \cos^2 \theta_K + (J_{2s} \sin^2 \theta_K + J_{2c} \cos^2 \theta_K) \cos 2\theta_\ell}{+J_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + J_5 \sin 2\theta_K \sin \theta_\ell \cos \phi} \\ + (J_{6s} \sin^2 \theta_K + J_{6c} \cos^2 \theta_K) \cos \theta_\ell + J_7 \sin 2\theta_K \sin \theta_\ell \sin \phi} \\ + J_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + J_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi}$$

C. Bobeth Beauty 2014 July 17, 2014 10 / 33

4-body decay with on-shell \overline{K}^* (vector)

1)
$$q^2 = m_{\bar{\ell}\ell}^2 = (p_\ell + p_{\bar{\ell}})^2 = (p_{\bar{B}} - p_{\bar{K}^*})^2$$

- 2) $\cos\theta_{\ell}$ with $\theta_{\ell} \angle (\vec{p}_{\bar{B}}, \vec{p}_{\ell})$ in $(\bar{\ell}\ell)$ c.m. system
- 3) $\cos\theta_{K}$ with $\theta_{K} \angle (\vec{p}_{\bar{R}}, \vec{p}_{\bar{K}})$ in $(\bar{K}\pi)$ c.m. system
- 4) $\phi \angle (\vec{p}_{\bar{k}} \times \vec{p}_{\pi}, \vec{p}_{\bar{\ell}} \times \vec{p}_{\ell})$ in *B*-RF

$$J_i(q^2)$$
 = "Angular Observables"

$$\frac{32\pi}{9} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2 \operatorname{dcos} \theta_\ell \operatorname{dcos} \theta_K \operatorname{d}\phi} = J_{1s} \sin^2\!\theta_K + J_{1c} \cos^2\!\theta_K + (J_{2s} \sin^2\!\theta_K + J_{2c} \cos^2\!\theta_K) \cos 2\theta_\ell \\ + J_3 \sin^2\!\theta_K \sin^2\!\theta_\ell \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + J_5 \sin 2\theta_K \sin \theta_\ell \cos \phi \\ + (J_{6s} \sin^2\!\theta_K + J_{6c} \cos^2\!\theta_K) \cos \theta_\ell + J_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \\ + J_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + J_9 \sin^2\!\theta_K \sin^2\!\theta_\ell \sin 2\phi_\ell \sin \phi$$

$$\Rightarrow$$
 "2 × (12 + 12) = 48" if measured separately: A) decay + CP-conj and B) for ℓ = e, μ

C. Bobeth Beauty 2014 July 17, 2014 10 / 33

4-body decay with on-shell \overline{K}^* (vector)

1)
$$q^2 = m_{\bar{\ell}\ell}^2 = (p_\ell + p_{\bar{\ell}})^2 = (p_{\bar{B}} - p_{\bar{K}^*})^2$$

- 2) $\cos\theta_{\ell}$ with $\theta_{\ell} \angle (\vec{p}_{\bar{B}}, \vec{p}_{\ell})$ in $(\bar{\ell}\ell)$ c.m. system
- 3) $\cos\theta_{K}$ with $\theta_{K} \angle (\vec{p}_{\bar{B}}, \vec{p}_{\bar{K}})$ in $(\bar{K}\pi)$ c.m. system

4)
$$\phi \angle (\vec{p}_{\vec{k}} \times \vec{p}_{\pi}, \vec{p}_{\bar{\ell}} \times \vec{p}_{\ell})$$
 in *B*-RF

⇒ CP-averaged and CP-asymmetric angular observables

$$S_i = \frac{J_i + \bar{J}_i}{\Gamma + \bar{\Gamma}}, \qquad A_i = \frac{J_i - \bar{J}_i}{\Gamma + \bar{\Gamma}},$$

[Krüger/Sehgal/Sinha/Sinha hep-ph/9907386] [Altmannshofer et al. arXiv:0811.1214]

CP-conj. decay $B^0 \to K^{*0} (\to K^+\pi^-) \ell^+\ell^-$: $d^4\overline{\Gamma}$ from $d^4\Gamma$ by replacing

$$\text{CP-even} \quad : \quad J_{1,2,3,4,7} \qquad \longrightarrow \qquad + \; \overline{J}_{1,2,3,4,7} [\delta_W \to -\delta_W]$$

CP-odd :
$$J_{5,6,8,9}$$
 \longrightarrow $-\overline{J}_{5,6,8,9}[\delta_W \rightarrow -\delta_W]$

with weak phases δ_W conjugated

C. Bobeth Beauty 2014

"Optimized observables" in $B \to K^* \bar{\ell} \ell$

Idea: reduce form factor (FF) sensitivity by combination (usually ratios) of angular obs's J_i

 \Rightarrow guided by large energy limit @ low- q^2 and Isgur-Wise @ high- q^2 FF-relations

"Optimized observables" in $B \to K^* \bar{\ell} \ell$

Idea: reduce form factor (FF) sensitivity by combination (usually ratios) of angular obs's J_i \Rightarrow guided by large energy limit @ low- q^2 and Isgur-Wise @ high- q^2 FF-relations

@ low q^2 = large recoil

$$A_T^{(2)} = P_1 = \frac{J_3}{2J_{2s}},$$

$$A_T^{(re)} = 2 P_2 = \frac{J_{6s}}{4 J_{2s}}$$

$$A_T^{(2)} = P_1 = \frac{J_3}{2J_{2s}},$$
 $A_T^{(re)} = 2P_2 = \frac{J_{6s}}{4J_{2s}},$ $A_T^{(im)} = -2P_3 = \frac{J_9}{2J_{2s}},$

$$P_4' = \frac{J_4}{\sqrt{-J_{2c}J_{2s}}}, \qquad P_5' = \frac{J_5/2}{\sqrt{-J_{2c}J_{2s}}}, \qquad P_6' = \frac{-J_7/2}{\sqrt{-J_{2c}J_{2s}}}, \qquad P_8' = \frac{-J_8}{\sqrt{-J_{2c}J_{2s}}},$$

$$P_5' = \frac{J_5/2}{\sqrt{-J_{2c}J_{2s}}},$$

$$P_6' = \frac{-J_7/2}{\sqrt{-J_{2c}J_{2s}}},$$

$$P_8' = \frac{-J_8}{\sqrt{-J_{2c}J_{2s}}}$$

$$A_T^{(3)} = \sqrt{\frac{(2J_4)^2 + J_7^2}{-2J_{2c}(2J_{2s} + J_3)}},$$

$$A_{T}^{(4)} = \sqrt{\frac{J_{5}^{2} + (2J_{8})^{2}}{(2J_{4})^{2} + J_{7}^{2}}}$$

[Krüger/Matias hep-ph/0502060, Egede/Hurth/Matias/Ramon/Reece arXiv:0807.2589 + 1005.0571]

[Becirevic/Schneider arXiv:1106.3283]

[Matias/Mescia/Ramon/Virto arXiv:1202.4266]

[Descotes-Genon/Matias/Ramon/Virto arXiv:1207.2753]

C. Bobeth Beauty 2014 July 17, 2014 11 / 33

"Optimized observables" in $B \to K^* \bar{\ell} \ell$

Idea: reduce form factor (FF) sensitivity by combination (usually ratios) of angular obs's J_i \Rightarrow guided by large energy limit @ low- q^2 and Isgur-Wise @ high- q^2 FF-relations

@ high q^2 = low recoil

$$H_T^{(1)} = P_4 = \frac{\sqrt{2}J_4}{\sqrt{-J_{2c}(2J_{2s}-J_3)}},$$

$$H_T^{(2)} = P_5 = \frac{J_5/\sqrt{2}}{\sqrt{-J_{2c}(2J_{2s}+J_3)}},$$

$$H_T^{(4)} = Q = \frac{\sqrt{2}J_8}{\sqrt{-J_{2c}(2J_{2s}+J_3)}},$$

$$\frac{A_9}{A_{PP}} = \frac{J_9}{I_P}$$
, and $\frac{J_8}{I_P}$

$$\label{eq:HT} H_T^{(3)} = \frac{J_{6s}/2}{\sqrt{(2J_{2s})^2 - (J_3)^2}},$$

$$H_T^{(5)} = \frac{-J_9}{\sqrt{(2J_{2s})^2-(J_3)^2}},$$

[CB/Hiller/van Dyk arXiv:1006.5013]

[Matias/Mescia/Ramon/Virto arXiv:1202.4266]

[CB/Hiller/van Dyk arXiv:1212.2321]

C. Bobeth Beauty 2014 July 17, 2014 11 / 33

Angular analysis and "real life"

When aiming at precision measurements in $B \to K^* (\to K\pi) \bar{\ell} \ell$ (*P*-wave config)

- \blacktriangleright inclusion of resonant and non-resonant $K\pi$ (in S-wave config) important in experiments
 - ⇒ additional contributions to angular distribution
 - \Rightarrow P- and S-wave can be disentangled in angular analysis
 - ⇒ taken into account by LHCb and CMS

[Lu/Wang arXiv:1111.1513, Becirevic/Tayduganov 1207.4004, Blake/Egede/Shires 1210.5279, Matias 1209.1525]

C. Bobeth Beauty 2014 July 17, 2014 12 / 33

Angular analysis and "real life"

When aiming at precision measurements in $B \to K^* (\to K\pi) \bar{\ell} \ell$ (*P*-wave config)

- \blacktriangleright inclusion of resonant and non-resonant $K\pi$ (in S-wave config) important in experiments
 - ⇒ additional contributions to angular distribution
 - \Rightarrow P- and S-wave can be disentangled in angular analysis
 - ⇒ taken into account by LHCb and CMS

[Lu/Wang arXiv:1111.1513, Becirevic/Tayduganov 1207.4004, Blake/Egede/Shires 1210.5279, Matias 1209.1525]

Extended angular analysis

▶ $B \to K\pi \bar{\ell} \ell$ off-resonance $(m_{K\pi}^2 \neq m_{K^*}^2)$ at high- q^2

[Das/Hiller/Jung/Shires arXiv:1406.6681]

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_\ell\mathrm{d}\cos\theta_K\mathrm{d}\phi}\longrightarrow\frac{\mathrm{d}^5\Gamma}{\mathrm{d}m_{K_\pi}^2\mathrm{d}q^2\mathrm{d}\cos\theta_\ell\mathrm{d}\cos\theta_K\mathrm{d}\phi}$$

- \Rightarrow include contributions from S_{-} , P_{-} , and D_{-} wave
- ⇒ provide access to further combinations of Wilson coefficients
- ⇒ probe strong phase differences with resonant contribution
- \Rightarrow analogously for $B_s \to \bar{K}K\bar{\ell}\ell$
- ▶ complementary constraints from angular analysis of $\Lambda_b \to \Lambda \bar{\ell} \ell$

[Böer/Feldmann/van Dyk talk FLASY 2014]

C. Bobeth Beauty 2014 July 17, 2014 12 / 33

Angular analysis of $B \to K \bar{\ell} \ell$

Besides $d\Gamma/dq^2$, two more obs's measured

LHCb 3/fb arXiv:1403.8045

$$\frac{1}{\Gamma} \frac{\mathsf{d}\Gamma}{\mathsf{d}\cos\theta_{\ell}} = \frac{F_{H}}{2} + A_{FB}\cos\theta_{\ell} + \frac{3}{4} \left[1 - F_{H}\right] \sin^{2}\!\theta_{\ell}$$

In the SM:

► $F_H \sim m_\ell^2/q^2$ tiny for $\ell = e, \mu$ and reduced FF uncertainties @ low- & high- q^2 CB/Hiller/Piranishvili arXiv:0709.4174, CB/Hiller/van Dyk/Wacker arXiv:1111.2558

► $A_{FB} = 0 + \mathcal{O}(\alpha_e)$ zero up to "QED-background"

Beyond SM: test scalar & tensor operators

CB/Hiller/Piranishvili arXiv:0709.4174

►
$$F_H \sim |C_T|^2 + |C_{T5}|^2 + \mathcal{O}(m_\ell)$$

►
$$A_{FB} \sim (C_S + C_{S'})C_T + (C_P + C_{P'})C_{T5} + \mathcal{O}(m_\ell)$$

C. Bobeth Beauty 2014 July 17, 2014 13 / 33

Angular analysis of $B \rightarrow K \bar{\ell} \ell$

Besides $d\Gamma/dq^2$, two more obs's measured

LHCb 3/fb arXiv:1403.8045

 $\frac{1}{\Gamma} \frac{\mathsf{d}\Gamma}{\mathsf{d}\mathsf{cos}\,\theta_\ell} = \frac{F_H}{2} + A_{FB} \,\mathsf{cos}\,\theta_\ell + \frac{3}{4} \,\big[1 - F_H\big] \,\mathsf{sin}^2\theta_\ell$

In the SM:

▶ $F_H \sim m_\ell^2/q^2$ tiny for ℓ = e, μ and reduced FF uncertainties @ low- & high- q^2

CB/Hiller/Piranishvili arXiv:0709.4174, CB/Hiller/van Dyk/Wacker arXiv:1111.2558

▶ $A_{FB} = 0 + \mathcal{O}(\alpha_e)$ zero up to "QED-background"

Beyond SM: test scalar & tensor operators

CB/Hiller/Piranishvili arXiv:0709.4174

►
$$F_H \sim |C_T|^2 + |C_{T5}|^2 + \mathcal{O}(m_\ell)$$

$$A_{FB} \sim (C_S + C_{S'})C_T + (C_P + C_{P'})C_{T5} + \mathcal{O}(m_\ell)$$

Lepton-flavour violating (LFV) effects: generalise $C_i \rightarrow C_i^{\ell}$!!!

Take ratios of observables for $\ell = \mu$ over $\ell = e$ (or $\ell = \tau$)

Krüger/Hiller hep-ph/0310219

 \Rightarrow FF's cancel in SM up to $\mathcal{O}(m_\ell^4/q^4)$ @ low- q^2

CB/Hiller/Piranishvili arXiv:0709.4174

$$R_{M}^{[q_{\min}^{2},\,q_{\max}^{2}]} = \frac{\int_{q_{\min}^{2}}^{q_{\max}^{2}} dq^{2} \frac{d\Gamma[B \to M\,\bar{\mu}\mu]}{dq^{2}}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}} dq^{2} \frac{d\Gamma[B \to M\,\bar{e}e]}{dq^{2}}}$$

for $M = K, K^*, X_s$

Angular analysis of $B \to K \bar{\ell} \ell$

Besides $d\Gamma/dq^2$, two more obs's measured

LHCb 3/fb arXiv:1403.8045

 $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}} = \frac{F_{H}}{2} + A_{FB}\cos\theta_{\ell} + \frac{3}{4} \left[1 - F_{H}\right] \sin^{2}\theta_{\ell}$

In the SM:

 $F_H \sim m_\ell^2/q^2$ tiny for $\ell = e, \mu$ and reduced FF uncertainties @ low- & high- q^2

CB/Hiller/Piranishvili arXiv:0709.4174, CB/Hiller/van Dyk/Wacker arXiv:1111.2558

► $A_{\text{FB}} = 0 + \mathcal{O}(\alpha_e)$ zero up to "QED-background"

Bevond SM: test scalar & tensor operators

►
$$F_H \sim |C_T|^2 + |C_{T5}|^2 + \mathcal{O}(m_\ell)$$

$$A_{\rm FB} \sim (C_S + C_{S'})C_T + (C_P + C_{P'})C_{T5} + \mathcal{O}(m_\ell)$$

Lepton-flavour violating (LFV) effects: generalise $C_i \rightarrow C_i^{\ell}$!!!

Take ratios of observables for $\ell = \mu$ over $\ell = e$ (or $\ell = \tau$)

Krüger/Hiller hep-ph/0310219

 \Rightarrow FF's cancel in SM up to $\mathcal{O}(m_{\ell}^4/q^4)$ @ low- q^2

CB/Hiller/Piranishvili arXiv:0709 4174

CB/Hiller/Piranishvili arXiv:0709.4174

$$R_{M}^{\left[q_{\min}^{2},\,q_{\max}^{2}\right]} = \frac{\int_{q_{\min}^{2}}^{q_{\max}^{2}} dq^{2} \frac{d\Gamma\left[B \rightarrow M\,\bar{\mu}\mu\right]}{dq^{2}}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}} dq^{2} \frac{d\Gamma\left[B \rightarrow M\,\bar{\mathbf{e}}\boldsymbol{e}\right]}{dq^{2}}}$$

for
$$M = K, K^*, X_s$$

Recent measurement of

 $R_{\kappa}^{[1,6]} = 0.745^{+0.090}_{-0.074} \pm 0.036$

deviates by 2.6σ from SM

 $R_{K,\text{CM}}^{[1,6]} = 1.0008 \pm 0.0004$

Bouchard et al. arxiv:1303.0434

13 / 33

LHCb 3/fb arXiv:1406.6482

C. Bobeth Beauty 2014 July 17, 2014

Theory of exclusive $b \rightarrow s \bar{\ell} \ell$ decays

Large Recoil (low-q²)

- ▶ very low- q^2 (\lesssim 1 GeV²) dominated by \mathcal{O}_7
- ▶ low- q^2 ([1,6] GeV²) dominated by $\mathcal{O}_{9,10}$
- 1) QCD factorization or SCET2) LCSR
 - 3) non-local OPE of $\bar{c}c$ -tails

Low Recoil (high- q^2)

- dominated by $\mathcal{O}_{9,10}$
- ► HQET + OPE ⇒ theory only for sufficiently large q²-integrated obs's

C. Bobeth Beauty 2014 July 17, 2014 15 / 33

"Naive factorization" works for $O_i \sim [\bar{s}\Gamma_i b][\bar{\ell}\Gamma_i'\ell] \Rightarrow FF's F_i$ $(i = 9^{(')}, 10^{(')}, S^{(')}, P^{(')}, T/T5)$

$$=9^{(\prime)},10^{(\prime)},S^{(\prime)},P^{(\prime)},T/T5$$

$$\mathcal{A}_{i}^{L/R} \propto (F_{i} + \mathsf{SL}_{FF,i})(C_{9}^{\mathrm{eff}} \mp C_{10}) + (F_{i}' + \mathsf{SL}_{FF',i})C_{7}^{\mathrm{eff}} + \mathsf{SL}_{Amp,i} + \mathcal{A}_{\bar{c}c} \quad i = L, \perp, \parallel$$

- 1) $SL_{FF(')} \sim \lambda$: subleading corrections from FF-relations ⇒ absent when not using FF-relations
- [Altmannshofer et al. arXiv:0811.1214]
- 2) SL_{Amp} : subleading corrections from $1/m_b$ expansions to amplitude
- $\mathcal{A}_{\bar{c}c}$: contributions from $\bar{c}c$ resonances

Theory at large and low recoil

 $\lambda \equiv \Lambda_{\rm QCD}/m_b \lesssim 0.15$

"Naive factorization" works for $O_i \sim [\bar{s}\Gamma_i b][\bar{\ell}\Gamma_i'\ell] \Rightarrow FF$'s F_i

$$(i = 9^{(')}, 10^{(')}, S^{(')}, P^{(')}, T/T5)$$

$$\mathcal{A}_{i}^{L/R} \propto (F_{i} + \underset{\mathsf{SL}_{\mathit{FF},i}}{\mathsf{SL}_{\mathit{FF},i}}) (C_{9}^{\mathrm{eff}} \mp C_{10}) + (F_{i}' + \underset{\mathsf{SL}_{\mathit{FF}',i}}{\mathsf{SL}_{\mathit{FF'},i}}) C_{7}^{\mathrm{eff}} + \underset{\mathsf{SL}_{\mathit{Amp},i}}{\mathsf{Amp},i} + \mathcal{A}_{\bar{\mathtt{c}}\mathtt{c}} \quad i = L, \perp, \parallel$$

- SL_{FF}(') ~ λ : subleading corrections from FF-relations ⇒ absent when not using FF-relations
- [Altmannshofer et al. arXiv:0811.1214]
- 2) SL_{Amp} : subleading corrections from $1/m_b$ expansions to amplitude
- 3) $A_{\bar{c}c}$: contributions from $\bar{c}c$ resonances

Large recoil

- ▶ large energy E_{K*} ~ m_b: hard-scattering of spectator in QCDF/SCET
- ► SL_{Amp} ~ λ: some known in QCDF

[Matias/Feldmann hep-ph/0212158,

Beneke/Feldmann/Seidel hep-ph0412400] also LCSR

[(Dimou)/Lyon/Zwicky arXiv:(1212.2242)1305.4797]

- \Rightarrow numerical contribution below λ
- ► A_{c̄c} become important for q² ≥ 6 GeV²
 [Khodjamirian/Mannel/Pivovarov/Wang
 arXiv:1006.4945]

Low recoil

▶ large $q^2 \sim m_b$: local OPE of 4-quark operators, accounts for $\mathcal{A}_{\bar{c}c}$

[Buchalla/Isidori hep-ph/9801456]

►
$$SL_{FF} \sim \lambda C_7/C_9 \approx 0.02$$
 with $C_7/C_9 \approx 0.1$

► $SL_{Amp} \sim \alpha_s \lambda \approx 0.05$

[Grinstein/Pirjol hep-ph/0404250]

b duality violation of OPE ≤ few %

[Beylich/Buchalla/Feldmann arxiv:1101.5188]

- 3.7σ local tension in $P'_{5, q^2 \in [4.3, 8.7]}$
- 2.5 σ local tension in $P'_{5, q^2 \in [1.0, 6.0]}$

comparing LHCb arXiv:1308.1707 with theory:

Descotes-Genon/Hurth/Matias/Virto arXiv:1303.5794

 \Rightarrow Two "recipes" used to estimate subleading crr's (mainly for SL_{FF})

- 3.7σ local tension in $P'_{5.\sigma^2 \in [4.3, 8.7]}$
- 2.5σ local tension in $P'_{5. a^2 \in [1.0, 6.0]}$

comparing LHCb arXiv:1308.1707 with theory:

Descotes-Genon/Hurth/Matias/Virto arXiv:1303.5794

⇒ Two "recipes" used to estimate subleading crr's (mainly for SL_{FF})

Egede/Hurth/Matias/Ramon/Reece arXiv:0807.2589

Introduce rescaling factor ζ for each transversity ampl.

$$A_{L,\, \perp,\, \parallel}^{L/R} \, \longrightarrow \, \zeta_{L,\, \perp,\, \parallel}^{L/R} \times A_{L,\, \perp,}$$

$$A_{L,\,\perp,\,\parallel}^{L/R} \; \longrightarrow \; \zeta_{L,\,\perp,\,\parallel}^{L/R} \times A_{L,\,\perp,\,\parallel} \qquad \qquad 1 - \frac{\Lambda_{\rm QCD}}{m_b} \; \lesssim \; \zeta \; \lesssim \; 1 + \frac{\Lambda_{\rm QCD}}{m_b}$$

- \Rightarrow mimic subleading crr's from A) FF relations and B) $1/m_h$ contr. to ampl.
- \Rightarrow can account for q^2 -dep.: introduce ζ for each q^2 -bin
- ⇒ used in most analysis/fits

- 3.7σ local tension in $P'_{5, q^2 \in [4.3, 8.7]}$
- 2.5 σ local tension in $P'_{5, q^2 \in [1.0, 6.0]}$

comparing LHCb arXiv:1308.1707 with theory:

Descotes-Genon/Hurth/Matias/Virto arXiv:1303.5794

- ⇒ Two "recipes" used to estimate subleading crr's (mainly for SL_{FF})
- SM arXiv:1303.5794
 SM arXiv:1212.2263
 LHCb 1fb⁻¹

 0

 15

 20

 q² [GeV²/c⁴]
- II) Jäger/Martin-Camalich arXiv:1212.2263

Keep track of subleadig crr.'s to FF-relations (ξ_j = universal FF)

$$FF_i \propto \xi_j + \alpha_s \Delta FF_i + a_i + b_i \frac{q^2}{m_B^2} + \dots$$

with a_i , b_i from spread of nonperturbative FF-calculations (LCSR, quark models ...) a_i , b_i are $\sim \Lambda_{\rm OCD}/m_b$ and ΔFF_i QCD crr's [Beneke/Feldmann hep-ph/0008255]

- III) preliminary Hofer/Matias talk ICHEP 2014 Update of method II)
 - -> find smaller subleading it corrections, contrary to ii)

- 3.7σ local tension in $P'_{5, q^2 \in [4.3, 8.7]}$
- 2.5σ local tension in $P'_{5, q^2 \in [1.0, 6.0]}$

comparing LHCb arXiv:1308.1707 with theory:

Descotes-Genon/Hurth/Matias/Virto arXiv:1303.5794

⇒ Two "recipes" used to estimate

- subleading crr's (mainly for SL_{FF})
- 1.0 ---- SFF no PC SM arXiv:1303.5794 SM arXiv:1212.2263 0.5 - LHCb 1fb⁻¹ 0.0 -0.5-1.08 10 15 $q^2 \, [\text{GeV}^2/c^4]$ $q^2(\text{GeV}^2)$
- II) Jäger/Martin-Camalich arXiv:1212.2263

Keep track of subleadig crr.'s to FF-relations (ξ_j = universal FF)

$$FF_i \propto \xi_j + \alpha_s \Delta FF_i + a_i + b_j \frac{q^2}{m_B^2} + \dots$$

preliminar

with a_i , b_i from spread of nonperturbative FF-calculations (LCSR, quark models ...) a_i , b_i are $\sim \Lambda_{\rm QCD}/m_b$ and ΔFF_i QCD crr's [Beneke/Feldmann hep-ph/0008255]

- III) preliminary Hofer/Matias talk ICHEP 2014 Update of method II)
 - ⇒ find smaller subleading FF corrections, contrary to II)

C. Bobeth Beauty 2014 July 17, 2014 17 / 33

factorization assumption for $B \to K + \Psi(nS)(\to \bar{\ell}\ell)$:

$$\langle \Psi(nS) K | (\bar{c} \Gamma c) (\bar{s} \Gamma' b) | B \rangle \approx \langle \Psi(nS) | \bar{c} \Gamma c | 0 \rangle \otimes \langle K | \bar{s} \Gamma' b | B \rangle + \dots$$
 nonfactorisable

+ dispersion relations with BES II $\bar{e}e \rightarrow \bar{q}q$ data

+ comparison with LHCb 3 fb⁻¹ of $B^+ \to K^+ \bar{\mu} \mu$ @ high- q^2

- factorization "badly fails" differentially in q²
 - ⇒ not unexpected, well-known from $B \to K\Psi(nS)$
 - ⇒ "fudge factor" ≠ 1
- ▶ does it invalidate the OPE ??? this requires q²-integration !!!
- ▶ investigate other $B \to M \bar{\ell} \ell$

$$M = K^*$$
 at LHCb

 $M = X_s$ (inclusive) at Belle II

+ including J/ψ and ψ'

factorization assumption for $B \to K + \Psi(nS)(\to \bar{\ell}\ell)$:

$$\langle \Psi(nS)\,K|(\bar{c}\Gamma c)(\bar{s}\Gamma' b)|B\rangle \approx \langle \Psi(nS)|\bar{c}\Gamma c|0\rangle \otimes \langle K|\bar{s}\Gamma' b|B\rangle + \dots \, \text{nonfactorisable}$$

+ dispersion relations with BES II $\bar{e}e \rightarrow \bar{q}q$ data

+ comparison with LHCb 3 fb⁻¹ of $B^+ \rightarrow K^+ \bar{\mu} \mu$ @ high- q^2

a) no "fudge factor": various "generalisations of factorisable contributions"

b) fit "fudge factor" = -2.6:
$$p = 1.5\%$$

c), d) fit rel. factors of
$$\Psi(nS)$$
:
 $p = 12\%$ and $p = 20\%$

 \Rightarrow improve the combined fit of BES II and LHCb considerably (BES II data alone: p = 44%)

- BUT can these parametrisations capture all features of non fact. contr.: Wilson coeffs. & q² ???
- can't be explained with NP in C9
 - \Rightarrow can ease tension in P_5'
 - \Rightarrow NP in $b \rightarrow s\bar{c}c$?!

C. Bobeth Beauty 2014

Model-independent Fits of $b \rightarrow s \bar{\ell} \ell$ decays

Recent "Global Fit's" after EPS-HEP 2013 Conference

1) DGMV	=	Descotes-Genon/Matias/Virto	[arXiv:1307.5683 + 1311.3876]	χ^2 -frequentist
2) AS	=	Altmannshofer/Straub	[arXiv:1308.1501]	χ^2 -fit
3) BBvD	=	Beaujean/CB/van Dyk	[arXiv:1310.2478 (journal version)]	Bayesian
4) HI MW	=	Horgan/Liu/Meinel/Wingate	[arXiv:1310.3887v3]	v^2 -fit

C. Bobeth Beauty 2014 July 17, 2014 20 / 33

Recent "Global Fit's" after EPS-HEP 2013 Conference

1) DGMV χ^2 -frequentist Descotes-Genon/Matias/Virto [arXiv:1307.5683 + 1311.3876] χ^2 -fit 2) AS Altmannshofer/Straub [arXiv:1308.1501]

3) BBvD Bayesian Beauiean/CB/van Dvk [arXiv:1310.2478 (journal version)] χ^2 -fit

Theory predictions

4) HLMW

@ low q^2 : $B \to K^* \bar{\ell} \ell$, $B \to K \bar{\ell} \ell$, $B \to K^* \gamma$

DGMV, AS, BBvD: based on QCDF (HLMW only uses high-q2 data)

[Beneke/Feldmann/Seidel hep-ph/0106067 + 0412400]

@ high q^2 : $B \to K^* \bar{\ell} \ell$, $B \to K \bar{\ell} \ell$

=

DGMV, AS, BBvD, HLMW; based on local OPE

Horgan/Liu/Meinel/Wingate

[Grinstein/Pirjol hep-ph/0404250; Beylich/Buchalla/Feldmann arXiv:1101.5118]

DGMV, AS, BBvD: LCSR $B \rightarrow K^*$ FF-results extrapolated from low a^2

HLMW, BBvD: use lattice $B \rightarrow K^*$ FF predictions [HLMW arXiv:1310.3722]

[arXiv:1310.3887v3]

20 / 33 C. Bobeth Beauty 2014 July 17, 2014

Recent "Global Fit's" after EPS-HEP 2013 Conference

1) DGMV = Descotes-Genon/Matias/Virto [arXiv:1307.5683 + 1311.3876] χ^2 -frequentist

2) AS = Altmannshofer/Straub [arXiv:1308.1501] χ^2 -fit 3) BBvD = Beaujean/CB/van Dyk [arXiv:1310.2478 (journal version)] Bayesian

4) HLMW = Horgan/Liu/Meinel/Wingate [arXiv:1310.3887v3] χ^2 -fit

Theory predictions

@ low q^2 : $B \to K^* \bar{\ell} \ell$, $B \to K \bar{\ell} \ell$, $B \to K^* \gamma$

DGMV, AS, BBvD: based on QCDF (HLMW only uses high- q^2 data)

[Beneke/Feldmann/Seidel hep-ph/0106067 + 0412400]

@ high q^2 : $B \to K^* \bar{\ell} \ell$, $B \to K \bar{\ell} \ell$

DGMV, AS, BBvD, HLMW: based on local OPE

[Grinstein/Pirjol hep-ph/0404250; Beylich/Buchalla/Feldmann arXiv:1101.5118]

DGMV, AS, BBvD: LCSR $B \rightarrow K^*$ FF-results extrapolated from low q^2

HLMW, BBvD: use lattice $B \to K^*$ FF predictions [HLMW arXiv:1310.3722]

Theory uncertainties

DGMV, AS, HLMW: combining theoretical and experimental uncertainties

⇒ included in likelihood

BBvD: most relevant parameters included in the fit as nuisance parameters

C. Bobeth Beauty 2014 July 17, 2014 20 / 33

Which data is used?

q ² Binning

	q^2 -Bins [GeV 2]
lo	[1, 6]
	[0, 2]
LO	[2, 4.3]
	[4.3, 8.68]
hi	[14.18, 16]
111	[16, 19]

DGMV: only LHCb data of $B \rightarrow K^* \bar{\ell} \ell$

AS, BBvD, HLMW:

use all available data from Belle, Babar, CDF, LHCb, CMS, ATLAS

	decay	obs	DGMV	AS	BBvD	HLMW
-	$B \to X_S \gamma$	Br	✓	✓	✓	
	$D \rightarrow \Lambda_S \gamma$	A_{CP}		\checkmark		
		Br			✓	
	$B \to K^* \gamma$	S(C)	✓	\checkmark	✓ (✓)	
		A_I	✓			
	$B_s o ar{\mu}\mu$	Br	√	✓	✓	
	$B \to X_{\mathcal{S}} \bar{\ell} \ell$	Br	lo	lo+hi	lo	
	$B \to K \bar{\ell} \ell$	Br		lo+hi	lo+hi	
		Br		lo+hi	lo+hi	hi
		F_L		lo+hi	lo+hi	hi
		$A_{ m FB}$	LO+hi	lo+hi	lo+hi [†]	hi
	$B \to K^* \bar{\ell} \ell$	$P_{1,2}, P'_{4,5,6}$	LO+hi		lo+hi [†]	
		P' ₈	LO+hi			
		S _{3,4,5}		lo+hi		hi
		A 9		lo+hi		
	$B_{\mathcal{S}} o \phi ar{\ell} \ell$	Br, F_L, S_3				hi

 $^{^{\}dagger}$ if P_2 is available then $A_{\rm FB}$ is not used: LHCb

C. Bobeth

1) only low q^2 : $A_{\rm FB}$, P_2 and P_5' prefer:

$$C_9^{NP} \approx -1.6$$

2) adding high q^2 : due to $q^2 \in [14.18, 16.0]$ GeV² bin $C_0^{NP} \approx -1.2$

3) only $C_7^{NP} \neq 0$ beneficial, NO real need for $C_{7',9',10'}$, however $C_{9'} < 0$ preferred

- ⇒ 3 main tensions between data and SM:
 - A) F_L @ low q^2 (from Babar and ATLAS)
 - B) P_5'/S_5 @ low q^2
 - C) P'_4/S_4 @ high q^2 (\Leftarrow even not resolvable with $C_{7',9',10'} \neq 0$)
 - 1) $C_{7,9}^{NP} \neq 0$ can reduce tension for F_L and S_5 , but not as good as:
 - 2) C_9^{NP} with $C_{9'}$ (or $C_{10'}$) $B \rightarrow K\bar{\ell}\ell \text{ requires } C_{9'} > 0 \text{ (or } C_{10'} < 0)$
 - 3) Fit does not improve much when allowing all $C_{i(l')} \neq 0 \rightarrow \text{best fit:}$

$$C_7^{NP} = -0.03,$$
 $C_9^{NP} = -0.9,$ $C_{10}^{NP} = -0.1,$ $C_{7'} = -0.11,$ $C_{9'} = +0.7,$ $C_{10'} = -0.2$

AS "Adding $B \to K\bar{\ell}\ell$ and other experiments"

- ⇒ 3 main tensions between data and SM:
 - A) F_1 @ low g^2 (from Babar and ATLAS)
 - B) P_5'/S_5 @ low q^2
 - C) P'_4/S_4 @ high q^2 (\leftarrow even not resolvable with $C_{7',9',10'} \neq 0$)
 - 1) $C_{7.9}^{NP} \neq 0$ can reduce tension for F_L and S_5 , but not as good as:

$$C_7^{NP} = -0.03,$$
 $C_9^{NP} = -0.9,$ $C_{10}^{NP} = -0.1$
 $C_{7'} = -0.11,$ $C_{\alpha'} = +0.7,$ $C_{10'} = -0.2$

AS "Adding $B \to K\bar{\ell}\ell$ and other experiments"

- ⇒ 3 main tensions between data and SM:
 - A) F_1 @ low g^2 (from Babar and ATLAS)
 - B) P_5'/S_5 @ low q^2
 - C) P'_4/S_4 @ high q^2 (\leftarrow even not resolvable with $C_{7',9',10'} \neq 0$)
 - 1) $C_{7.9}^{NP} \neq 0$ can reduce tension for F_L and S_5 , but not as good as:
 - 2) C_{0}^{NP} with $C_{9'}$ (or $C_{10'}$) $B \rightarrow K\bar{\ell}\ell$ requires $C_{Q'} > 0$ (or $C_{10'} < 0$)

$$C_7^{NP} = -0.03,$$
 $C_9^{NP} = -0.9,$ $C_{10}^{NP} = -0.1$
 $C_{7'} = -0.11,$ $C_{9'} = +0.7,$ $C_{10'} = -0.2$

23 / 33 C. Bobeth Beauty 2014 July 17, 2014

AS "Adding $B \to K\bar{\ell}\ell$ and other experiments"

- ⇒ 3 main tensions between data and SM:
 - A) F_1 @ low g^2 (from Babar and ATLAS)
 - B) P_5'/S_5 @ low q^2
 - C) P'_4/S_4 @ high q^2 (\leftarrow even not resolvable with $C_{7',9',10'} \neq 0$)
 - 1) $C_{7,9}^{NP} \neq 0$ can reduce tension for F_L and S_5 , but not as good as:
 - 2) C_{0}^{NP} with $C_{9'}$ (or $C_{10'}$) $B \rightarrow K\bar{\ell}\ell$ requires $C_{9'} > 0$ (or $C_{10'} < 0$)
 - 3) Fit does not improve much when allowing all $C_{i(')} \neq 0 \rightarrow \text{best fit:}$

$$C_7^{NP} = -0.03,$$
 $C_9^{NP} = -0.9,$ $C_{10}^{NP} = -0.1,$ $C_{7'} = -0.11,$ $C_{9'} = +0.7,$ $C_{10'} = -0.2$

C. Bobeth 23 / 33 Beauty 2014 July 17, 2014

 \Rightarrow $B \rightarrow K^*$ (and $B_s \rightarrow \phi$) FF's predict:

- A) too large $Br @ high q^2$
- B) too small P'_4/S_4 @ high q^2 also $(B_S \rightarrow \phi)$ FF's predict too large Br

HLMW "Only $B \to K^* \bar{\ell} \ell$ @ high q^2 " with $B \to K^*$ lattice FF's

$$\Rightarrow B \rightarrow K^*$$
 (and $B_s \rightarrow \phi$) FF's predict:

- A) too large Br @ high q^2
- B) too small P'_4/S_4 @ high q^2

- 1) only high q^2 data of $B \to K^* \bar{\ell} \ell \& B_s \to \phi \bar{\ell} \ell$
- 2) consider only $C_q^{NP} C_q'$ scenario
- 3) best fit point:

$$C_9^{NP} = -1.0 \pm 0.6,$$
 $C_{9'} = +1.2 \pm 1.0$

and only highest $q^2 \in [16, 19]$ GeV² bin:

$$C_9^{NP} = -0.9 \pm 0.7,$$
 $C_{9'} = +0.4 \pm 0.7$

C. Bobeth 24 / 33 Beauty 2014 July 17, 2014

BBvD "Fitting also all the nuisance parameters ..."

- A) ... describing q^2 -dependence of form factors
 - ▶ $B \rightarrow K$: $2 \times \rightarrow$ prior from LCSR + Lattice
 - ▶ $B \rightarrow K^*$: 6× \rightarrow prior from 1) LCSR (NO Lattice) OR 2) LCSR + Lattice
- B) ... of naive parametrisation of subleading corrections
 - ▶ $B \rightarrow K$: 2× @ low and high q^2
 - $B \rightarrow K^*$: 6× @ low q^2 and 3× @ high q^2

priors: about 15%~ $\Lambda_{\rm QCD}/m_b$ of leading amplitude

C) CKM, quark masses, ...

... in total 28 nuisance parameters

BBvD "Fitting also all the nuisance parameters ..."

- A) ... describing q^2 -dependence of form factors
 - ▶ $B \rightarrow K$: $2 \times \rightarrow$ prior from LCSR + Lattice
 - ▶ $B \rightarrow K^*$: 6× → prior from 1) LCSR (NO Lattice) OR 2) LCSR + Lattice
- B) ... of naive parametrisation of subleading corrections
 - ▶ $B \rightarrow K$: 2× @ low and high q^2
 - ► $B \rightarrow K^*$: 6× @ low q^2 and 3× @ high q^2

priors: about 15%~ $\Lambda_{\rm OCD}/m_b$ of leading amplitude

C) CKM, quark masses, ...

... in total 28 nuisance parameters

Model-independent New Physics scenarios

Fits in the SM

1) SM = only nuisance parameters

and model-independent scenarios

2)
$$SM_{7,9,10} = C_{7,9,10}^{NP} \neq 0$$

3)
$$SM+SM' = C_{7.9.10}^{NP} \neq 0$$
 and $C_{7',9',10'} \neq 0$

4)
$$SM+SM'_{9,9'} = C_0^{NP} \neq 0$$
 and $C_{9'} \neq 0$

C. Bobeth Beauty 2014 July 17, 2014 25 / 33

Fitting nuisance parameters

subleading corrections

 \Rightarrow in SM some subleading $B \rightarrow K^*$ corrections

$$\sim -(15-20)\%$$
 for $\chi = \pm 0$ @ low q^2
 $\sim +10\%$ for $\chi = \|$

with gaussian priors of $1\sigma \sim \Lambda_{\rm QCD}/m_b \sim 15\%$

Fitting nuisance parameters

subleading corrections

 \Rightarrow in SM some subleading $B \rightarrow K^*$ corrections

$$\sim -(15-20)\%$$
 for $\chi = \pm 0$ @ low q^2
 $\sim +10\%$ for $\chi = \|$

with gaussian priors of $1\sigma \sim \Lambda_{\rm QCD}/m_b \sim 15\%$

 \Rightarrow relaxed in SM+SM', except $\zeta_{K^*}^{L\perp}$

Fitting nuisance parameters

subleading corrections

 \Rightarrow in SM some subleading $B \rightarrow K^*$ corrections

$$\sim -(15-20)\% \qquad \text{for } \chi = \pm, 0 \text{ @ low } q^2$$
$$\sim +10\% \qquad \qquad \text{for } \chi = \parallel$$

with gaussian priors of $1\sigma \sim \Lambda_{\rm QCD}/m_b \sim 15\%$

 \Rightarrow relaxed in SM+SM', except $\zeta_{K^*}^{L_{\perp}}$

$B \rightarrow K^*$ form factors	
No lattice $B \to K^*$ in p	rior

⇒ data prefers higher FF's in

SM+SM' than SM & SM_{7,9,10}

 \Rightarrow consistent with lattice results:

[Horgan/Liu/Meinel/Wingate arXiv:1310.3722]

SM: lattice FF's too large for measured $Br[B \to K^* \bar{\ell} \ell]$ @ high q^2

	prior	SM	$SM_{7,9,10}$	SM+SM'
<i>V</i> (0)	$0.35^{+0.13}_{-0.08}$	$0.38^{+0.04}_{-0.02}$	$0.38^{+0.03}_{-0.03}$	$0.38^{+0.04}_{-0.03}$
$A_{1}(0)$	$0.27^{+0.09}_{-0.05}$	$0.24^{+0.03}_{-0.02}$	$0.24^{+0.03}_{-0.03}$	$0.28^{+0.04}_{-0.03}$
$A_2(0)$	$0.24^{+0.13}_{-0.07}$	$0.23^{+0.04}_{-0.04}$	$0.22^{+0.05}_{-0.04}$	$0.27^{+0.06}_{-0.05}$

C. Bobeth Beauty 2014 July 17, 2014 26 / 33

Fitting effective couplings

SM+SM'

 (\times) = best fit point

⇒ 4 solutions with posterior masses:
$$A' = 39\%$$
, $B' = 41\%$, $C' = 5\%$, $D' = 15\%$ with lattice $B \to K^*$ FF's: $A' = 49\%$, $B' = 31\%$, $C' = 5\%$, $D' = 15\%$

 $\Rightarrow C_{o}^{SM}$ at border of 2σ

All scenarios: inclusion of lattice $B \to K^*$ yields only minor changes in C_i

SM+SM'_{9,9'}

 $\Rightarrow \mathcal{C}_9^{\mathrm{SM}}$ at border of 2σ

 $\Rightarrow \mathcal{C}_{9'}^{\mathrm{SM}}$ at border of 3σ

C. Bobeth Beauty 2014 July 17, 2014 27 / 33

 \Rightarrow In SM: 6 measurements (out of 92) with pull values > 2 σ @ best fit point:

Belle : $\langle Br \rangle_{[16,19]} \rightarrow +2.6\sigma$ BaBar : $\langle F_L \rangle_{[1,6]} \rightarrow -3.5\sigma$

LHCb : $\langle P_4' \rangle_{[14,16]} \rightarrow -2.4\sigma \quad \langle P_5' \rangle_{[1,6]} \rightarrow +2.1\sigma$ not yet published

ATLAS : $(A_{FB})_{[16,19]} \rightarrow +2.2\sigma \quad (F_L)_{[1,6]} \rightarrow -2.6\sigma$

SM p values @ best fit point:

0.10 (and 0.04 with lattice $B \rightarrow K^*$ FF's)

excluding $\langle F_L \rangle_{[1,6]}$ from BaBar and ATLAS:

0.38 (and 0.30 with lattice $B \rightarrow K^*$ FF's)

 \Rightarrow In SM: 6 measurements (out of 92) with pull values > 2σ @ best fit point:

Belle : $\langle Br \rangle_{\lceil 16,19 \rceil} \rightarrow +2.6\sigma$ BaBar : $\langle F_L \rangle_{[1,6]} \rightarrow -3.5\sigma$

LHCb : $\langle P_4' \rangle_{[14,16]} \rightarrow -2.4\sigma \quad \langle P_5' \rangle_{[1,6]} \rightarrow +2.1\sigma$ not yet published ATLAS : $\langle A_{\rm FB} \rangle_{[16,19]} \rightarrow +2.2\sigma \quad \langle F_L \rangle_{[1,6]} \rightarrow -2.6\sigma$

SM p values @ best fit point: excluding $\langle F_L \rangle_{[1.6]}$ from BaBar and ATLAS: 0.10 (and 0.04 with lattice $B \rightarrow K^*$ FF's)

0.38 (and 0.30 with lattice $B \rightarrow K^*$ FF's)

Model comparison of models M_1 and M_2 with priors $P(M_i)$ (\leftarrow unknown!)

$$\frac{P(M_1|D)}{P(M_2|D)} = B(D|M_1, M_2) \frac{P(M_1)}{P(M_2)}$$
 Bayes factor: $B(D|M_1, M_2) \equiv \frac{P(D|M_1)}{P(D|M_2)}$

!!! Models with more parameters are disfavored by larger prior volume, unless they improve the fit substantially

C. Bobeth Beauty 2014 July 17, 2014 28 / 33

 \Rightarrow In SM: 6 measurements (out of 92) with pull values > 2σ @ best fit point:

Belle : $\langle Br \rangle_{[16,19]} \rightarrow +2.6\sigma$

BaBar : $\langle F_L \rangle_{[1,6]} \rightarrow -3.5\sigma$

LHCb : $\langle P_4' \rangle_{[14,16]} \rightarrow -2.4\sigma \quad \langle P_5' \rangle_{[1,6]} \rightarrow +2.1\sigma$ not yet published ATLAS : $\langle A_{\rm FB} \rangle_{[16,19]} \rightarrow +2.2\sigma \quad \langle F_L \rangle_{[1,6]} \rightarrow -2.6\sigma$

SM p values @ best fit point:

0.10 (and 0.04 with lattice $B \rightarrow K^*$ FF's) 0.38 (and 0.30 with lattice $B \rightarrow K^*$ FF's)

excluding $\langle F_L \rangle_{[1,6]}$ from BaBar and ATLAS:

Model comparison of models M_1 and M_2 with priors $P(M_i)$ (\leftarrow unknown!)

$$\frac{P(M_1|D)}{P(M_2|D)} = B(D|M_1, M_2) \frac{P(M_1)}{P(M_2)}$$

Bayes factor: $B(D|M_1, M_2) \equiv \frac{P(D|M_1)}{P(D|M_2)}$

!!! Models with more parameters are disfavored by larger prior volume, unless they improve the fit substantially

$B(D M_1,M_2)^{\dagger}$	SM _{7,9,10} :SM	SM+SM':SM	SM+SM' _{9,9'} : SM	$\delta C_{7(')} \in [-0.2, 0.2]$
no lattice FF's	1:93	1:19	8:1	$\delta C_{9('),10(')} \in [-2,2]$
with lattice FF's	1:97	5:1	820:1	

[†] H. Jeffreys interpretation of $B(D|M_1, M_2)$ as strength of evidence in favour of M_2 :

1:3 < barely worth mentioning. 1:10 < substantial. 1:30 < strong. 1:100 < very strong. > 1:100 decisive.

C. Bobeth Beauty 2014 July 17, 2014 28 / 33

 \Rightarrow In SM: 6 measurements (out of 92) with pull values > 2σ @ best fit point:

Belle : $\langle Br \rangle_{[16,19]} \rightarrow +2.6\sigma$ BaBar : $\langle F_L \rangle_{[1,6]} \rightarrow -3.5\sigma$

LHCb : $(P_4')_{[14,16]} \rightarrow -2.4\sigma$ $(P_5')_{[1,6]} \rightarrow +2.1\sigma$ ATLAS : $(A_{FB})_{[16,19]} \rightarrow +2.2\sigma$ $(F_L)_{[1,6]} \rightarrow -2.6\sigma$ not yet published

SM p values @ best fit point:

0.10 (and 0.04 with lattice $B \rightarrow K^*$ FF's)

excluding $\langle F_L \rangle_{[1.6]}$ from BaBar and ATLAS:

0.38 (and 0.30 with lattice $B \rightarrow K^*$ FF's)

Model comparison of models M_1 and M_2 with priors $P(M_i)$ (\leftarrow unknown!)

$$\frac{P(M_1|D)}{P(M_2|D)} = B(D|M_1, M_2) \frac{P(M_1)}{P(M_2)}$$
 Bayes factor: $B(D|M_1, M_2) \equiv \frac{P(D|M_1)}{P(D|M_2)}$

!!! Models with more parameters are disfavored by larger prior volume, unless they improve the fit substantially

- !!! Looks very interesting
- ⇒ waiting eagerly for LHCb update with 3 fb⁻¹, hopefully this year
- ⇒ updated analysis from BaBar, ATLAS, Belle would be also welcome

C. Bobeth Beauty 2014 July 17, 2014 28 / 33

Constraints in the MSSM

In MSSM NO large $|C_{9,9'}^{NP}| \sim 1$ possible \Rightarrow qualitative discussion

[Altmannshofer/Straub arXiv:1308.1501]

Quantitative analysis for

CMSSM(5), NUHM(6), pMSSM(19)

[Mahmoudi/Neshatpour/Virto arXiv:1401.2145]

- even in pMSSM: $-0.3 \lesssim |C_{o}^{NP}| \lesssim 0.2$
- $B \to K^* \bar{\ell} \ell$ as constraining as $B \to X_s \gamma$ and/or $B_s \rightarrow \bar{\mu}\mu$, depending on NP parameters ⇒ example CMSSM

blue line: requiring $M_H > 122 \text{ GeV}$

black line: direct searches ATLAS 20.3 fb-1

C. Bobeth

Beauty 2014 July 17, 2014

Other studies

- ▶ Z, Z' models
 - \Rightarrow tree-FCNC most natural to accommodate NP in C_9 without changing C_{10}
 - ⇒ many particular models

Gauld/Goetz/Haisch arxiv:1308.1959 & 1310.1082 Buras/Girrbach arXiv:1309.2466 and Buras/De Fazio/Girrbach arXiv:13011.6729 Altmannshofer/Gori/Pospelov/Yavin arXiv:1403.1269

▶ Partial compositeness models

[Altmannshofer/Straub arXiv:1308.1501]

- \Rightarrow NP in $C_{7.7'}$ possible
- \Rightarrow large NP in $C_{9.9'}$ requires large degree of compositeness and cancellations for $C_{10.10'}$
- ⇒ not clear whether viable once accounting for constraints on lepton sector
- ► Model-independent $b \rightarrow s \bar{b}b$ dim-6 operators

[Datta/Duraisamy/Ghosh arXiv:1310.1937]

 $\Rightarrow b \rightarrow s \bar{b}b$ dim-6 operators mix into $\mathcal{O}_{7,7',9,9'}$ but not $\mathcal{O}_{10,10'}$

C. Bobeth Beauty 2014 July 17, 2014 30 / 33

Summary & Issues

Summary of model-independent fits

- ▶ 4 analyses (DGMV, AS, BBvD, HLMW) → many differences:
 - 1) choice of data
 - 2) choice of theory uncertainties (subleading, high q^2 , FF's)
 - ⇒ still: consistent picture in fits
- ▶ $B \to K^* \bar{\ell} \ell$ low- q^2 data prefers $C_9^{NP} < 0$, not only from P_5'
- ▶ $B \rightarrow K^* \bar{\ell} \ell$ high- q^2 data with $B \rightarrow K^*$ FF's prefers $C_9^{NP} < 0 \& C_{9'} > 0$
- ▶ in combination with $B \to K\bar{\ell}\ell$ can drive $C_{9',10'} \neq 0$
- ► SM compatible with data for subleading crr's @ low $q^2 \neq 0$, but within $\Lambda_{\rm QCD}/m_b$ expectation
- Bayes factors shift prior probability in favour of SM+SM' with only C_{9,9'} over SM !!! when using B → K* lattice FF's even SM+SM' with C_{7',9',10'} favoured over SM

"EOS = Flavour tool" by Beaujean/CB/van Dyk et al.

Download @ http://project.het.physik.tu-dortmund.de/eos/

C. Bobeth Beauty 2014 July 17, 2014 32 / 33

Summary of model-independent fits

- ▶ 4 analyses (DGMV, AS, BBvD, HLMW) → many differences:
 - 1) choice of data
 - 2) choice of theory uncertainties (subleading, high q^2 , FF's)
 - ⇒ still: consistent picture in fits
- ▶ $B \to K^* \bar{\ell} \ell$ low- q^2 data prefers $C_9^{NP} < 0$, not only from P_5'
- ▶ $B \to K^* \bar{\ell} \ell$ high- q^2 data with $B \to K^*$ FF's prefers $C_9^{NP} < 0 \& C_{9'} > 0$
- ▶ in combination with $B \to K\bar{\ell}\ell$ can drive $C_{9',10'} \neq 0$
- ► SM compatible with data for subleading crr's @ low $q^2 \neq 0$, but within $\Lambda_{\rm QCD}/m_b$ expectation
- Bayes factors shift prior probability in favour of SM+SM' with only C_{9,9'} over SM !!! when using B → K* lattice FF's even SM+SM' with C_{7',9',10'} favoured over SM

"Pessimistic" interpretation:

"Fits yield $C_9^{NP} \neq 0$ as a sign of nonunderstood QCD effects, whereas C_{10} is free of them and therefore we find indeed $C_{10}^{NP} = 0$, consistent with the SM prediction."

"EOS = Flavour tool" by Beaujean/CB/van Dyk et al.
Download @ http://project.het.physik.tu-dortmund.de/eos/

C. Bobeth Beauty 2014 July 17, 2014 32 / 33

Issues ?!

Perhaps with data:

- fluctuations in the data
 - ⇒ new results will be available hopefully within this year from
 - Belle (final reprocessed)
 - 2) LHCb (1 fb⁻¹ \rightarrow 3 fb⁻¹ missing for $B \rightarrow K^* \bar{\ell} \ell$)
 - 3) CMS and ATLAS (5 fb⁻¹ \rightarrow 25 fb⁻¹)
 - 4) Babar F_L , A_{FB} not yet published
- exact endpoint relations at $q^2 = q_{\text{max}}^2$ have to be fulfilled experimentally

[Hiller/Zwicky arXiv:1312.1923]

▶ consistency checks among angular obs's in $B \to K^* \bar{\ell} \ell$ (in limit $m_\ell \to 0$)

[Matias/Serra arXiv:1402.6855]

and/or the theory:

- ▶ theory @ high q²
 - 1) local OPE is not reliable (even q^2 -integrated OR large duality violation)
 - ⇒ some predictions of OPE can be tested experimentally

[CB/Hiller/van Dyk arXiv:1006.5013 + 1212.2321]

- 2) q^2 -binning in exp. data not yet optimal for OPE?
- 3) $B \rightarrow K^*$ FFs from lattice too high and/or underestimated systematics?
- theory @ low q²
 - 1) for subleading corrections $\Lambda_{\rm QCD}/m_b$ (QCD factorization)
 - 2) large long-distance $\bar{c}c$ contributions

Backup Slides

Hadronic amplitude
$$B \to K^* (\to K\pi) \ell^+ \ell^-$$

neglecting 4-quark operators

$$\mathcal{M} = \langle K\pi | C_7 \times \frac{b}{2} + C_{9,10} \times \frac{b}{1} | B \rangle$$

C. Bobeth Beauty 2014 July 17, 2014 35 / 33

Hadronic amplitude $B \to K^* (\to K\pi) \ell^+ \ell^-$

neglecting 4-quark operators

$$\mathcal{M} = \langle K\pi | C_7 \times \frac{b}{\geqslant_{\gamma}} + C_{9,10} \times \frac{b}{\geqslant_{\gamma}} | B \rangle$$

\mathcal{M} may expressed in terms of transversity amplitudes of K^* (m_{ℓ} = 0)

- \dots using narrow width approximation & intermediate K^* on-shell
- \Rightarrow "just" requires $B \rightarrow K^*$ form factors $V, A_{1,2}, T_{1,2,3}$:

$$A_{\perp}^{L,R} \sim \sqrt{2\,\lambda} \left[\left(\, C_9 \mp C_{10} \, \right) \frac{{\color{red} V}}{M_B + M_{K^*}} \, + \frac{2\,m_b}{q^2} \, C_7 \, {\color{red} T_1}} \right],$$

$$A_{\parallel}^{L,R} \sim -\sqrt{2} \left(M_B^2 - M_{K^*}^2\right) \left[\left(C_9 \mp C_{10}\right) \frac{A_1}{M_B - M_{K^*}} + \frac{2 \, m_b}{q^2} C_7 \frac{T_2}{q} \right],$$

$$A_0^{L,R} \sim -\frac{1}{2 \, M_{K^*} \sqrt{q^2}} \left\{ (C_9 \mp C_{10}) \left[\dots A_1 + \dots A_2 \right] + 2 \, m_b C_7 \left[\dots T_2 + \dots T_3 \right] \right\}$$

C. Bobeth Beauty 2014 July 17, 2014 35 / 33

Hadronic amplitude
$$B \to K^* (\to K\pi) \ell^+ \ell^-$$

including 4-quark operators

$$\mathcal{M} = \langle K\pi | C_7 \times \frac{b}{\geqslant_{\gamma}} + C_{9,10} \times \frac{b}{q} \times \frac{s}{q} \times \frac{b}{q} \times \frac{s}{q} \times \frac{b}{q} \times \frac{s}{q} \times \frac{b}{q} \times \frac{s}{q} \times \frac{b}{q} \times$$

... but 4-Quark operators and \mathcal{O}_{8q} have to be included

- current-current $b \rightarrow s + (\bar{u}u, \bar{c}c)$
- QCD-penguin operators $b \rightarrow s + \bar{q}q$ (q = u, d, s, c, b)
- \Rightarrow large peaking background around certain $q^2 = (M_{J/\psi})^2$, $(M_{\psi'})^2$:

$$B \to K^{(*)}(\bar{q}q) \to K^{(*)}\bar{\ell}\ell$$

C. Bobeth Beauty 2014 July 17, 2014 35 / 33

$Low-q^2 = Large Recoil$

QCD Factorisation (QCDF)

[Beneke/Feldmann/Seidel hep-ph/0106067, hep-ph/0412400]

= (large recoil + heavy quark) limit [also Soft Collinear ET (SCET)]

$$\langle \bar{\ell}\ell \, K_a^* \, \Big| \, H_{\text{eff}}^{(i)} \, \Big| \, B \rangle \sim$$

$$C_a^{(i)} \times \xi_a + \phi_B \otimes T_a^{(i)} \otimes \phi_{a,K^*} + \mathcal{O}(\Lambda_{\text{QCD}}/m_b)$$

 $C_a^{(i)}$, $T_a^{(i)}$: perturbative kernels in α_s ($a = \bot$, \parallel , i = u, t)

 ϕ_B , ϕ_{a,K^*} : B– and K_a^* –distribution amplitudes

cc-contributions

[Khodjamirian/Mannel/Pivovarov/Wang arXiv:1006.4945]

- OPE near light-cone incl. soft-gluon emission (non-local operator) for $q^2 \le 4 \text{ GeV}^2 \ll 4m_c^2$
- hadronic dispersion relation using measured $B \to K^{(*)}(\bar{c}c)$ amplitudes at $q^2 \ge 4 \text{ GeV}^2$
- $B \to K^{(*)}$ form factors from LCSR
- up to (15-20) % in rate for $1 < q^2 < 6 \text{ GeV}^2$

C. Bobeth Beauty 2014 July 17, 2014 36 / 33

$High-q^2 = Low Recoil$

Hard momentum transfer $(q^2 \sim M_B^2)$ through $(\bar{q}q) \rightarrow \bar{\ell}\ell$ allows local OPE

$$\frac{b}{qq} = \frac{b}{q} = \frac{b}{q} + \frac{c}{q^2} + \frac{c}{q^2$$

$$\begin{split} \mathcal{M}[\bar{B} \to \bar{K}^* + \bar{\ell}\ell] &\sim \frac{8\pi^2}{q^2} i \int d^4x \, e^{iq \cdot x} \langle \bar{K}^* | T\{\mathcal{L}^{\mathrm{eff}}(0), j_{\mu}^{\mathrm{em}}(x)\} | \bar{B} \rangle \left[\bar{\ell} \gamma^{\mu} \ell \right] \\ &= \left(\sum_{a} \mathcal{C}_{3a} \mathcal{Q}_{3a}^{\mu} + \sum_{b} \mathcal{C}_{5b} \mathcal{Q}_{5b}^{\mu} + \sum_{c} \mathcal{C}_{6c} \mathcal{Q}_{6c}^{\mu} + \mathcal{O}(\dim > 6) \right) \left[\bar{\ell} \gamma_{\mu} \ell \right] \end{split}$$

Buchalla/Isidori hep-ph/9801456, Grinstein/Pirjol hep-ph/0404250, Beylich/Buchalla/Feldmann arXiv:1101.5118

Leading dim = 3 operators: $\langle \bar{K}^* | \mathcal{Q}_{3,a} | \bar{B} \rangle \sim \text{usual } B \to K^* \text{ form factors } V, A_{0,1,2}, T_{1,2,3}$

$$\mathcal{Q}_{3,1}^{\mu} = \left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{\sigma^2}\right) \left[\bar{s}\gamma_{\nu}(1-\gamma_5)b\right] \qquad \rightarrow \qquad C_9 \rightarrow C_9^{\mathrm{eff}}, \qquad (V,A_{1,2})$$

$$Q_{3,2}^{\mu} = \frac{im_b}{a^2} \, q_{\nu} \left[\bar{s} \, \sigma_{\nu\mu} (1 + \gamma_5) \, b \right] \qquad \rightarrow \qquad C_7 \to C_7^{\text{eff}}, \tag{$T_{1,2,3}$}$$

C. Bobeth Beauty 2014 July 17, 2014 37 / 33

- dim = 3 α_s matching corrections are also known
- $m_s \neq 0$ 2 additional dim = 3 operators, suppressed with $\alpha_s m_s/m_b \sim 0.5$ %, NO new form factors
- dim = 4 absent
- dim = 5 suppressed by $(\Lambda_{\rm QCD}/m_b)^2 \sim 2$ %, explicite estimate @ $q^2 = 15$ GeV²: < 1%
- dim = 6 suppressed by $(\Lambda_{\rm QCD}/m_b)^3 \sim 0.2$ % and small QCD-penguin's: $C_{3,4,5,6}$ spectator quark effects: from weak annihilation

beyond OPE duality violating effects

- based on Shifman model for c-quark correlator + fit to recent BES data
- ± 2 % for integrated rate $q^2 > 15 \text{ GeV}^2$
- \Rightarrow OPE of exclusive $B \to K^{(*)} \ell^+ \ell^-$ predicts small sub-leading contributions !!!

BUT, still missing $B \to K^{(*)}$ form factors @ high- q^2 for predictions of angular observables J_i

C. Bobeth Beauty 2014 July 17, 2014 38 / 33

$High-q^2$: OPE + HQET

Framework developed by Grinstein/Pirjol hep-ph/0404250

1) OPE in $\Lambda_{\rm QCD}/Q$ with $Q = \{m_b, \sqrt{q^2}\}$ + matching on HQET + expansion in m_c

	$\mathcal{Q}_{j,\alpha}^{(\kappa)}$	power	$\mathcal{O}(lpha_{\mathtt{S}})$
$\mathcal{M}[\bar{B} \to \bar{K}^* + \bar{\ell}\ell] \sim \frac{8\pi}{q^2} \sum_{i=1}^6 \mathcal{C}_i(\mu) \mathcal{T}_{\alpha}^{(i)}(q^2, \mu) [\bar{\ell}\gamma^{\alpha}\ell]$	$Q_{1,2}^{(-2)}$	1	$\alpha_s^0(Q)$
$q^2 \stackrel{\text{\tiny int}}{=} 1$	$Q_{1-5}^{(-1)}$	$\Lambda_{ m QCD}/Q$	$\alpha_s^1(Q)$
$\mathcal{T}_{\alpha}^{(i)}(q^2,\mu) = i \int d^4x e^{iq\cdot x} \langle \bar{K}^* T\{\mathcal{O}_i(0), j_{\alpha}^{\text{em}}(x)\} \bar{B} \rangle$	$Q_{1,2}^{(0)}$	m_c^2/Q^2	$\alpha_s^0(Q)$
$=\sum_{k\geqslant -2}\sum_{j}C_{i,j}^{(k)}(\mathcal{Q}_{j,lpha}^{(k)})$	$\mathcal{Q}_{j>3}^{(0)}$	$\Lambda_{\rm QCD}^2/Q^2$	$\alpha_s^0(Q)$
$\sum_{k\geqslant -2}\sum_{j} (-i,j) (-i,j) \alpha^{j}$	$Q_i^{(2)}$	m_c^4/Q^4	$\alpha_s^0(Q)$
	included		

incluaea,

unc. estimate by naive pwr cont.

2) HQET FF-relations at sub-leading order + α_s corrections in leading order

$$T_{1}(q^{2}) = \kappa V(q^{2}), \qquad T_{2}(q^{2}) = \kappa A_{1}(q^{2}), \qquad T_{3}(q^{2}) = \kappa A_{2}(q^{2}) \frac{M_{B}^{2}}{q^{2}},$$

$$\kappa = \left(1 + \frac{2D_{0}^{(v)}(\mu)}{C_{0}^{(v)}(\mu)}\right) \frac{m_{b}(\mu)}{M_{B}}$$

can express everything in terms of QCD FF's $V, A_{1,2} \otimes \mathcal{O}(\alpha_s \Lambda_{\text{OCD}}/Q)$!!!

C. Bobeth Beauty 2014 July 17, 2014 39 / 33

Angular observables

$$\begin{split} J_i(q^2) \sim \left\{ \text{Re, Im} \right\} \left[A_m^{L,R} \left(A_n^{L,R} \right)^* \right] \\ \sim \sum_a (C_a F_a) \sum_b (C_b F_b)^* \end{split}$$

 $A_m^{L,R} \dots K^*$ -transversity amplitudes $m = \perp, \parallel, 0$

 C_a ... short-distance coefficients F_a ... form factors

C. Bobeth Beauty 2014 July 17, 2014 40 / 33

Angular observables

$$J_i(q^2) \sim \{ \text{Re, Im} \} \left[A_m^{L,R} \left(A_n^{L,R} \right)^* \right]$$

$$\sim \sum_a (C_a F_a) \sum_b (C_b F_b)^*$$

 $A_m^{L,R} \dots K^*$ -transversity amplitudes $m = \perp, \parallel, 0$

 $C_a \dots$ short-distance coefficients F_a ... form factors

simplify when using form factor relations:

low K^* recoil limit: $E_{K^*} \sim M_{K^*} \sim \Lambda_{\rm OCD}$

[Isgur/Wise PLB232 (1989) 113, PLB237 (1990) 527]

$$T_1 \approx V$$

$$T_2 \approx A_1$$

$$T_3 \approx A_2 \frac{M_B^2}{q^2}$$

large K^* recoil limit: $E_{K^*} \sim M_B$

[Charles et al. hep-ph/9812358, Beneke/Feldmann hep-ph/0008255]

$$\xi_{\perp} \equiv \frac{M_B}{M_B + M_{K^*}} V \approx \frac{M_B + M_{K^*}}{2E_{K^*}} A_1 \approx T_1 \approx \frac{M_B}{2E_{K^*}} T_2$$

$$\xi_{\parallel} \equiv \frac{M_B + M_{K^*}}{2E_{K^*}} A_1 - \frac{M_B - M_{K^*}}{2E_{K^*}} A_2 \approx \frac{M_B}{2E_{K^*}} T_2 - T_3$$

C. Bobeth Beauty 2014 July 17, 2014 40 / 33

$$A_{i}^{L,R} \sim C^{L,R} \times f_{i} \qquad \qquad C^{L,R} = (C_{9} \mp C_{10}) + \kappa \frac{2m_{b}^{2}}{q^{2}} C_{7},$$

1 SD-coefficient $C^{L,R}$ and 3 FF's f_i ($i = \perp, \parallel, 0$)

C. Bobeth Beauty 2014 July 17, 2014 41 / 33

FF symmetry breaking

$$A_i^{L,R} \sim C^{L,R} \times f_i + C_7 \times \mathcal{O}(\lambda, \alpha_s)$$

$$C^{L,R} = (C_9 \mp C_{10}) + \kappa \frac{2m_b^2}{q^2} C_7,$$

1 SD-coefficient $C^{L,R}$ and 3 FF's f_i ($i = \perp, \parallel, 0$)

$$C_7^{\rm SM} \approx -0.3, \ C_9^{\rm SM} \approx 4.2, \ C_{10}^{\rm SM} \approx -4.2$$

$$\mathbf{f}_{\perp} = \frac{\sqrt{2\hat{\lambda}}}{1 + \hat{M}_{K^*}} \mathbf{V}, \qquad \mathbf{f}_{\parallel} = \sqrt{2} \left(1 + \hat{M}_{K^*} \right) \mathbf{A}_{1},$$

$$\mathbf{f_{\perp}} = \frac{\sqrt{2\hat{\lambda}}}{1 + \hat{M}_{K^*}} \mathbf{V}, \qquad \mathbf{f_{\parallel}} = \sqrt{2} \left(1 + \hat{M}_{K^*} \right) \mathbf{A_1}, \qquad \mathbf{f_0} = \frac{(1 - \hat{s} - \hat{M}_{K^*}^2)(1 + \hat{M}_{K^*})^2 \mathbf{A_1} - \hat{\lambda} \mathbf{A_2}}{2 \, \hat{M}_{K^*} (1 + \hat{M}_{K^*}) \sqrt{\hat{s}}}$$

("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])

FF symmetry breaking

OPE

$$A_{i}^{L,R} \sim C^{L,R} \times f_{i} + C_{7} \times \mathcal{O}\left(\lambda,\alpha_{s}\right) + \mathcal{O}\left(\lambda^{2}\right),$$

$$C^{L,R} = (C_9 \mp C_{10}) + \kappa \frac{2m_b^2}{q^2} C_7,$$

1 SD-coefficient $C^{L,R}$ and 3 FF's f_i ($i = \perp, \parallel, 0$)

$$C_7^{\rm SM} \approx -0.3, \ C_9^{\rm SM} \approx 4.2, \ C_{10}^{\rm SM} \approx -4.2$$

$$\mathbf{f}_{\perp} = \frac{\sqrt{2\hat{\lambda}}}{1 + \hat{M}_{K^*}} \mathbf{V}, \qquad \mathbf{f}_{\parallel} = \sqrt{2} \left(1 + \hat{M}_{K^*} \right) \mathbf{A}_{1},$$

$$\mathbf{f}_{\perp} = \frac{\sqrt{2\hat{\lambda}}}{1 + \hat{M}_{K^*}} \mathbf{V}, \qquad \mathbf{f}_{\parallel} = \sqrt{2} \left(1 + \hat{M}_{K^*} \right) \mathbf{A}_{1}, \qquad \mathbf{f}_{0} = \frac{(1 - \hat{\mathbf{s}} - \hat{M}_{K^*}^2)(1 + \hat{M}_{K^*})^2 \mathbf{A}_{1} - \hat{\lambda} \mathbf{A}_{2}}{2 \, \hat{M}_{K^*} (1 + \hat{M}_{K^*}) \sqrt{\hat{\mathbf{s}}}}$$

("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])

⇒ small, apart from possible duality violations

FF symmetry breaking

OPE

$$A_{i}^{L,R} \sim C^{L,R} \times f_{i} + C_{7} \times \mathcal{O}\left(\lambda,\alpha_{s}\right) + \mathcal{O}\left(\lambda^{2}\right), \qquad \qquad C^{L,R} = \left(C_{9} \mp C_{10}\right) + \kappa \frac{2m_{b}^{2}}{a^{2}}C_{7},$$

1 SD-coefficient $C^{L,R}$ and 3 FF's f_i ($i = \perp, \parallel, 0$)

 $C_7^{\text{SM}} \approx -0.3, C_9^{\text{SM}} \approx 4.2, C_{10}^{\text{SM}} \approx -4.2$

("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])

Large hadronic recoil

$$A_{\perp,\parallel}^{L,R} \sim \pm C_{\perp}^{L,R} \times \xi_{\perp} + \mathcal{O}\left(\alpha_{\mathcal{S}}, \lambda\right), \qquad \qquad A_{0}^{L,R} \sim C_{\parallel}^{L,R} \times \xi_{\parallel} + \mathcal{O}\left(\alpha_{\mathcal{S}}, \lambda\right)$$

2 SD-coefficients $C_{\perp,\parallel}^{L,R}$ and 2 FF's $\xi_{\perp,\parallel}$

$$C_{\perp}^{L,R} = (C_9 \mp C_{10}) + \frac{2m_b M_B}{a^2} C_7,$$
 $C_{\parallel}^{L,R} = (C_9 \mp C_{10}) + \frac{2m_b}{M_B} C_7,$

⇒ small, apart from possible duality violations

FF symmetry breaking

OPE

$$A_{i}^{L,R} \sim C^{L,R} \times f_{i} + C_{7} \times \mathcal{O}\left(\lambda,\alpha_{s}\right) + \mathcal{O}\left(\lambda^{2}\right), \qquad \qquad C^{L,R} = \left(C_{9} \mp C_{10}\right) + \kappa \frac{2m_{b}^{2}}{q^{2}}C_{7}, \label{eq:constraints}$$

1 SD-coefficient $C^{L,R}$ and 3 FF's f_i ($i = \perp, \parallel, 0$)

$$C_7^{\rm SM} \approx -0.3, \ C_9^{\rm SM} \approx 4.2, \ C_{10}^{\rm SM} \approx -4.2$$

$$\frac{\textit{f}_{\perp}}{1+\hat{M}_{K^*}} = \frac{\sqrt{2\hat{\lambda}}}{1+\hat{M}_{K^*}} \underbrace{\textit{V}}, \qquad \frac{\textit{f}_{\parallel}}{1+\hat{M}_{K^*}} = \sqrt{2} \left(1+\hat{M}_{K^*}\right) \underbrace{\textit{A}_{1}}_{1}, \qquad \frac{\textit{f}_{0}}{2} = \frac{\left(1-\hat{s}-\hat{M}_{K^*}^{2}\right) \left(1+\hat{M}_{K^*}\right)^{2} \underbrace{\textit{A}_{1}-\hat{\lambda}}_{2}}{2\,\hat{M}_{K^*} \left(1+\hat{M}_{K^*}\right) \sqrt{\hat{s}}}$$

("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])

Large hadronic recoil

 \Rightarrow limited, end-point-divergences at $\mathcal{O}(\lambda)$

$$A_{\perp,\parallel}^{L,R} \sim \pm C_{\perp}^{L,R} \times \xi_{\perp} + \mathcal{O}\left(\alpha_{\mathcal{S}}, \lambda\right), \qquad \qquad A_{0}^{L,R} \sim C_{\parallel}^{L,R} \times \xi_{\parallel} + \mathcal{O}\left(\alpha_{\mathcal{S}}, \lambda\right)$$

2 SD-coefficients $C_{\perp,\parallel}^{L,R}$ and 2 FF's $\xi_{\perp,\parallel}$

$$C_{\perp}^{L,R} = (C_9 \mp C_{10}) + \frac{2m_b M_B}{\sigma^2} C_7,$$

$$C_{\parallel}^{L,R} = (C_9 \mp C_{10}) + \frac{2m_b}{M_B} C_7,$$

Parameters of interest

 $\vec{\theta} = C_i$ (Wilson coeff's)

C. Bobeth Beauty 2014 July 17, 2014 42 / 33

Parameters of interest

 $\vec{\theta} = C_i$ (Wilson coeff's)

Nuisance parameters

 process-specific form factors & decay const's, LCDA pmr's, sub-leading Λ/m_b, renormalization scales: μ_{b,0}

2) general

 $\vec{\nu}$

quark masses, CKM, . . .

Parameters of interest

 $\vec{\theta} = C_i$ (Wilson coeff's)

Nuisance parameters

 process-specific form factors & decay const's, LCDA pmr's, sub-leading Λ/m_b, renormalization scales: μ_{b,0}

2) general

 $\vec{\nu}$

quark masses, CKM, . . .

Observables

1) observables

 $O(\vec{\theta}, \vec{\nu})$ depend usually on sub-set of $\vec{\theta}$ and $\vec{\nu}$

2) experimental data for each observable

$$pdf(O = o)$$

⇒ probability distribution of values o

Parameters of interest

 $\vec{\theta} = C_i$ (Wilson coeff's)

Nuisance parameters

 $\vec{\nu}$

- process-specific form factors & decay const's, LCDA pmr's, sub-leading \(\Lambda / m_b, \)
- renormalization scales: $\mu_{b,0}$ 2) general
 - quark masses, CKM, . . .

Observables

- 1) observables
 - $O(\vec{\theta}, \vec{\nu})$ depend usually on sub-set of $\vec{\theta}$ and $\vec{\nu}$
- 2) experimental data for each observable

$$pdf(O = o)$$

⇒ probability distribution of values o

Fit strategies: 1) Put theory uncertainties in likelihood:

ightharpoonup sample $\vec{\theta}$ -space (grid, Markov Chain, importance sampling...)

$$\chi^2 = \sum \frac{(O_{\rm ex} - O_{\rm th})^2}{\sigma_{\rm ex}^2 + \sigma_{\rm th}^2}$$

- ▶ theory uncertainties of O_i at each $(\vec{\theta})_i$: vary $\vec{\nu}$ within some ranges $\Rightarrow \sigma_{th}(O[(\vec{\theta})_i])$
- ▶ use Frequentist or Bayesian method \Rightarrow 68 & 95 % (CL or CR) regions of $\vec{\theta}$

Parameters of interest

 $\vec{\theta} = C_i$ (Wilson coeff's)

Nuisance parameters

 $\vec{\nu}$

- process-specific form factors & decay const's, LCDA pmr's, sub-leading \(\Lambda / m_b, \)
- renormalization scales: $\mu_{b,0}$ 2) general
 - guark masses, CKM, . . .

Observables

- 1) observables
 - $O(\vec{\theta}, \vec{\nu})$ depend usually on sub-set of $\vec{\theta}$ and $\vec{\nu}$
- 2) experimental data for each observable

$$pdf(O = o)$$

⇒ probability distribution of values o

Fit strategies: 2) Fit also nuisance parameters:

- **>** sample $(\vec{\theta} \times \vec{\nu})$ -space (grid, Markov Chain, importance sampling...)
- accounts for theory uncertainties by fitting also $(\vec{\nu})_i$
- ▶ use Frequentist or Bayesian method \Rightarrow 68 & 95 % (CL or CR) regions of $\vec{\theta}$ and $\vec{\nu}$

Workflow of global data analysis implemented in EOS . . .

Newly developed Sampler: Population Monte Carlo (PMC) initialised with Markov Chain samples ⇒ highly parallelizable!

C. Bobeth Beauty 2014 July 17, 2014 43 / 33