

Mario Galanti University of Padova and INFN Padova

Tracker needs to be rebuilt

Phase 1 Upgrade

- In Phase 1 the pixel detector will be replaced
 - One more layer, closer to the beam pipe -> more precise
 - Lower material budget -> smaller multiple scattering
- Overall better performance for low pT tracks, used for B-physics

CERN-LHCC-2012-016

http://cds.cern.ch/record/1481838?In=en

Offline tracking resolution

Clear improvement expected in the whole η range

CMS p_T modules for trigger

2S(trip) sensors modules 100 µm x 5 cm long strips on both sensors

P(ixel)S(strip) module

strips = 100 μ m x 2.4 cm pixels = 100 μ m x 1.5 mm

Pixels are logically OR-ed for finding coincidence in the $r-\phi$ plane, and the precise z-coordinate is retained in the pixel storage and provided to the trigger processors

Effects on $B_{s/d} \rightarrow \mu \mu$

- Chosen benchmark channel to illustrate benefits
 - Toy MC studies based on the published analysis (Phys. Rev. Lett. 111 (2013) 101804)
 - Average pileup in 2012 was 21.
 - Basic analysis relies on
 - Low μ trigger p_T thresholds (3 GeV at L1)
 - Muon and di-muon vertex isolation
 - Displaced vertex
 - Di-muon vertex aligned with flight path
 - Low muon fake rate $\varepsilon(\mu | \pi) < 0.15\%$
 - All the above points will be possible with Improved tracking detectors

Working scenario

Assumptions

- Same trigger thresholds as the current one, in particular the $p_T(\mu)>3$ GeV at L1
 - Feasible with the L1-Track Trigger
- Reduced efficiencies due to 140 pileup events expected
 - Assume 30% loss in the isolation efficiency
 - + 2.5% loss per μ reconstruction efficiency
 - The resolution in the endcap (0.5 to 1 mm) is comparable to the average vertex separation

- Reduced impact of this region in the analysis in discerning Bd from Bs peak.
- Systematics
 - fs/fu = 5% [now is 9%]
 - Normalization (still assume $B^\pm \to J/\psi K^\pm)$ = 3% \oplus 5%/ \checkmark (L/20 fb^-1) [now 5% from yields and 3% from BR]
 - Peaking background uncertainty = $10\% \oplus 50\%/\sqrt{(L/20 \text{ fb}^{-1})}$
 - Semileptonic background uncertainty = $20\% \oplus 50\%/\sqrt{(L/20 \text{ fb}^{-1})}$

Detector resolutions

- Tracker phase 2 detector has better p_T resolution
 - a factor of \sim 1.6 in the barrel and \sim 1.2 in the endcap
- <u>Do not take into account</u> the better resolution in the impact parameter due to 1st layer closer to the beam-pipe and (possibly) smaller pitch

Effects on $B_{s/d} \rightarrow \mu \mu$						
CMS Simula 120 80 40 40 40 40 40 40 40 40 40 40 40 40 40	tion - Scaled to L = 300	fb ⁻¹ data full PDF $B_s \rightarrow \mu^+ \mu^-$ $B_d \rightarrow \mu^+ \mu^-$ combinatorial b semileptonic bk peaking bkg	kg g G G G G G G G G G G G G G G G G G G	CMS Simulation - Scaled 450 400 000 350 250 150 0 400 0 400 0 400 0 400 0 400 0 400 0 0 400 0 0 0 0 0 0 0 0 0 0 0 0	d to L = 3000 fb ⁻¹ d ta L = B_{d} B_{d} B_{d} Com Sem	PDF $\mu^+\mu^-$ $\mu^+\mu^-$ binatorial bkg ileptonic bkg king bkg 5.7 5.8 5.9 $m_{\mu\mu}$ (GeV)
Improved Tracker						
L (fb ⁻¹)	No. of B_s^0	No. of B ⁰	$\delta \mathcal{B}/\mathcal{B}(B_s{}^0 \to \mu^+\mu^-)$	$\delta {\cal B}/{\cal B}({ m B}^0 o \mu^+\mu^-)$	B ⁰ sign.	$\delta rac{\mathcal{B}(\mathrm{B}^0 o \mu^+ \mu^-)}{\mathcal{B}(\mathrm{B}^0_{\mathrm{s}} o \mu^+ \mu^)}$
20	16.5	2.0	35%	>100%	0.0–1.5 σ	>100%
100	144	18	15%	66%	0.5–2.4 σ	71%
300	433	54	12%	45%	1.3–3.3 σ	47%
3000	2096	256	12%	18%	5.4–7.6 σ	21%

- In the coming years, the LHC accelerator and the CMS detector will undergo a series of upgrades in two major steps.
 - The first will result in a data sample corresponding to 300 fb⁻¹ of integrated luminosity and the second to 3000 fb⁻¹.
 - New Tracker detectors will be deployed in the two steps
 - ◆ For Phase 2 the Tracker will provide L1 trigger tracks down to 2 GeV p_T
- With the increased data sample sizes it will be possible to reduce both systematic and statistical errors leading to high precision measurements of $B(B_s \rightarrow \mu\mu)$ and $B(B_d \rightarrow \mu\mu)$, which would allow stringent tests of the Standard Model
 - Other decay modes are expected to benefit
 - A new era for Heavy Flavour physics at CMS will be opened