

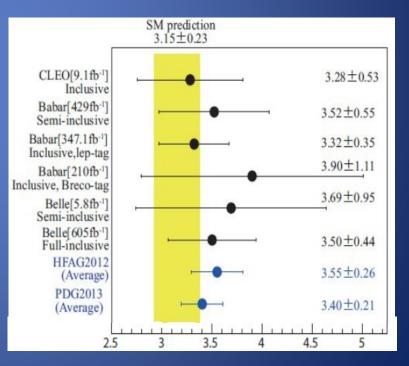
Electroweak and Radiative Penguin Transitions from B Factories

Paoti Chang National Taiwan University BEAUTY 2014 14-18 July, Edinburgh, England

Introduction

• Electroweak and radiative B decays are sensitive to new physics in the penguin loop.

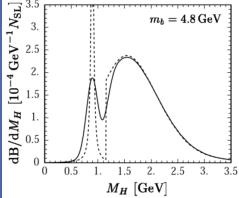
- Small SM branching fraction ($m{B}$)
- More precise theoretical predictions
- Many observables: \mathcal{B} , A_{cp} , A_{FB} , P_5' , iso-spin asym. ...
- In this talk :


1. \mathscr{B} (B \rightarrow X_s γ); 2. A_{cp} (B \rightarrow X_{s(+d)} γ); 3. B \rightarrow X_s I⁺ I⁻: A_{FB}, \mathscr{B} , A_{CP}

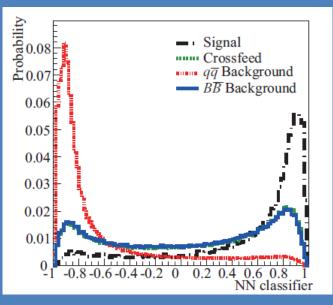
$B \rightarrow X_s \gamma$, Measurements & Prediction

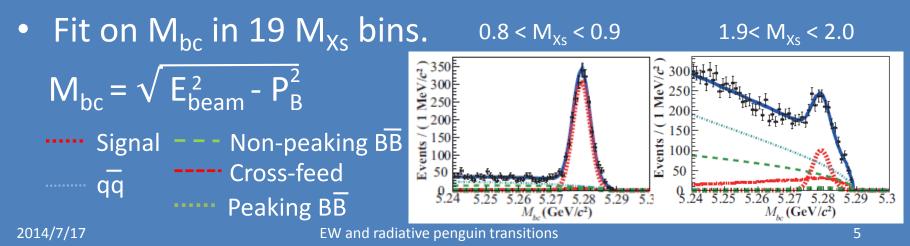
• NNLO calculation: \mathscr{B} (B \rightarrow X_s γ) = (3.15±0.23)x10⁻⁴ with E_{γ} > 1.6 GeV. Misiak et al., PRL 98, 022002 (2007)

- Experimental measurements
 - Require minimum E_{γ}^{*}
 - Inclusive approach
 Subtraction with off
 - resonance data
 - 2. Lepton tags or full reconstruct the other B
 - Semi-Inclusive approach


Reconstruct many X_s states.

$B \rightarrow X_s \gamma$, semi-inclusive

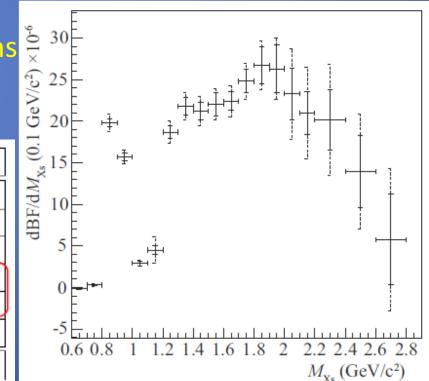

- Data sample: 711 fb⁻¹ (772 BB pairs)
- Signal reconstruction: **1. 1. 8** < E_{ν}^{*} < **3. 4** GeV; veto π^{0} and η **2.** $X_s = 1K^{\pm}(K_s) + up \text{ to } 4 \pi (\le 2\pi^0)$ 3K with at most $1K_s$ + up to 1π $0.6 < M_{xc} < 2.8 \text{ GeV/c}^2 \Rightarrow 38 \text{ states}$ Signal Model: $\begin{cases} M_{\chi_s} < 1.15 \text{ GeV/c}^2 \implies B \rightarrow K^*(892) \\ M_{\chi_s} > 1.15 \text{ GeV/c}^2 \implies Kagan-Neubert+JETSET \end{cases}$ Generate with $\begin{cases} M_b = 4.44 \text{ GeV/c}^2 \\ \mu_{\pi}^2 = 0.750 \text{ GeV}^2 \end{cases}$



$B \rightarrow X_s \gamma$, Analysis

- Veto D decays, $B \rightarrow D^{(*)}$ (K $\pi\pi$) ρ
- Continuum suppression is achieved by combining shape variables, tagging and $\Delta E = E_B^* - E_{beam}^*$ into Neural Network after the ΔE cut.

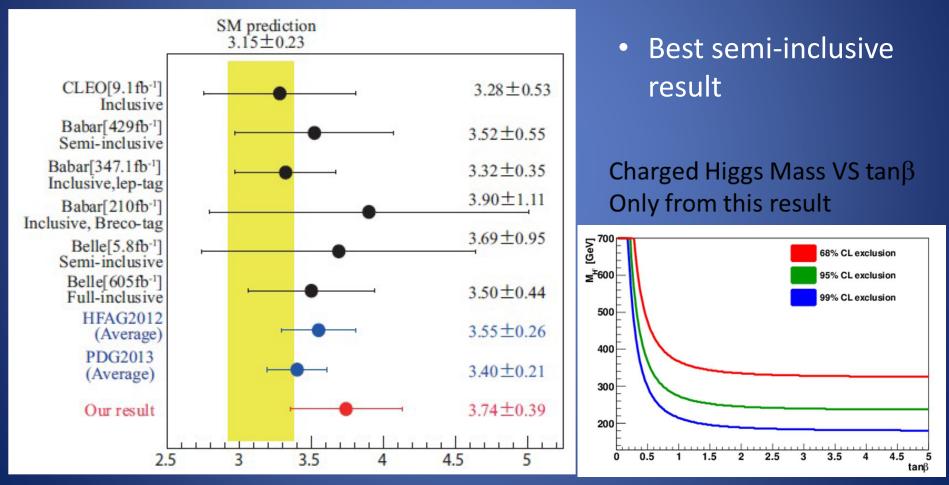
• Choose the best candidate based on NN value.



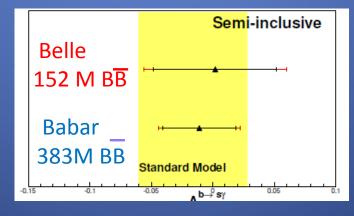
$B \rightarrow X_s \gamma$, Preliminary results

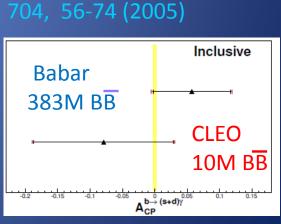
• With 0.6 < M_{xs} < 2.8 GeV/c² (E_{γ}^* >1.8 GeV) \mathscr{B} (B \rightarrow X_s γ) = (3.51 ± 0.17 ± 0.33) x 10⁻⁴

 Calibrate the Xs fragmentation model by comparing the 10 fractions of final states in data and MC.


Source	Systematic uncertainty (%)
$B\overline{B}$ counting	1.37
Detector response	2.98
Background rejection	3.38
M_{bc} PDF	5.06
Hadronization model	6.66
Missing mode	1.59
Total	9.3

\mathscr{B} (B \rightarrow X_s γ), comparison


Extrapolation to $E_{\gamma}^* > 1.6$ GeV and compare with theory \mathcal{B} (B \rightarrow X_s γ) = (3.74 ± 0.18 ± 0.35) x 10⁻⁴



EW and radiative penguin transitions

Direct CP Asymmetry in $B \rightarrow X_{s/d} \gamma$ $A_{CP}(SM)$ Small A_{CP} in SM. $B \rightarrow X_s \gamma = -0.6\% - 2.8\%$ $\frac{\Gamma(B \to f) - \Gamma(B \to f)}{\Gamma(\overline{B} \to \overline{f}) + \Gamma(B \to f)}$ $(f = X_{s,d} \gamma) B \rightarrow X_d \gamma$ -62% - 14% $B \rightarrow X_{s+d} \gamma$ ~ 0 $A_{CP}^{q} =$ $\neg q$, q = d, s Benzke et al., PRL 106, 141801 (2011) $\Delta \Gamma^{\mathsf{q}} \propto \mathsf{Im} \left(\mathsf{V}_{\mathsf{u}\mathsf{a}} \, \check{\mathsf{V}}_{\mathsf{u}\mathsf{b}}^* \mathsf{V}_{\mathsf{c}\mathsf{a}} \, \mathsf{V}_{\mathsf{c}\mathsf{b}}^* \right)$ Hurth et al., Nucl. Phys. Due to unitarity of CKM matrix, $\Delta \Gamma^{s} = -\Delta \Gamma^{d}$

Clean Probe for new physics
Previous results

$A_{CP}(B \rightarrow X_s \gamma)$, Semi-inclusive

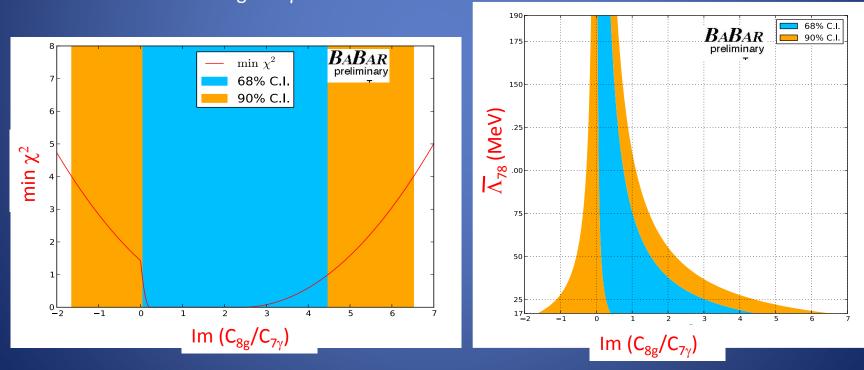
- Data sample: 429 fb⁻¹ \Rightarrow 471 x 10⁶ BB pairs
- Flavour specific X_s states: 10 for B⁺ and 6 for B⁰
- Require 1.6< E_{γ}^* < 3.0 GeV
- Best candidate: $\Delta E/\sigma_E$, M_{Xs}, FWM, thrust, P_{π^0}
- Reject continuum : shape variables & π^0 score
- Possible asymmetry bias:

- Asymmetry due to $\epsilon(K\pm) \Rightarrow D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K^- \pi^+$

- Peaking BB background \Rightarrow MC

$A_{CP}(B \rightarrow X_s \gamma)$ and ΔA_{CP} , Preliminary

 With BaBar full data sample, arXiv: 1406.0534 $A_{CP}(B \rightarrow X_s \gamma) = (+1.7 \pm 1.9 \pm 1.0)\% \leftarrow Most precise$ $\Delta A(X_{s}\gamma) = A_{CP}(X_{s}^{\pm}\gamma) - A_{CP}(X_{s}^{0}\gamma) = (+5.0\pm3.9\pm1.5)\%$ • $\Delta A(X_s \gamma)$ is related to C_{8g} and $C_{7\gamma}$, $\Delta A(X_s\gamma) = 4\pi^2 \alpha_s \frac{\overline{\Lambda}_{78}}{m_b} \operatorname{Im}(C_{8g}/C_{7\gamma}) \approx 0.12 \frac{\overline{\Lambda}_{78}}{100 \text{ MeV}} \operatorname{Im}(C_{8g}/C_{7\gamma})$ Interference amplitude: $\overline{\Lambda}_{78}$; 17< $\overline{\Lambda}_{78}$ < 190 MeV In SM, C_{8g} and $C_{7\gamma}$ are real. $\Rightarrow \Delta A = 0$ Benzke et al., PRL 106, 141801 (2011)



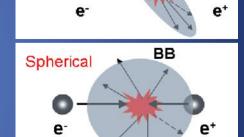
Implication on $Im(C_{8g}/C_{7\gamma})$

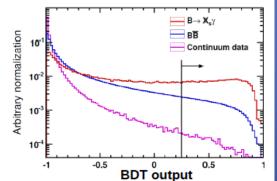
Minimum $\chi^2 = \frac{\min \left[(\Delta A_{Th} - \Delta A_{Exp})^2 \right]}{\sigma^2}$

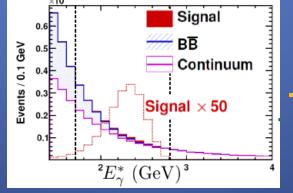
 $-1.64 < Im(C_{8g}/C_{7\gamma}) < 6.52 @90\% CL$

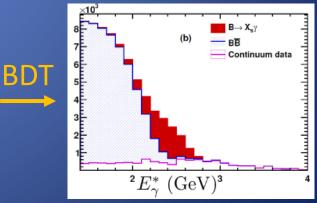
arXiv:1406.0534

$B \rightarrow X_{s+d} \gamma$, Analysis method

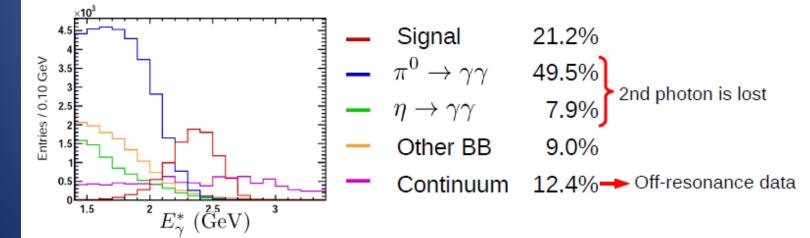

- $1.7 < E_{\gamma}^* < 2.8 \text{ GeV}$
- Veto γ from π^0 (η) $\rightarrow \gamma\gamma$.
- (I) $X = B = Y(4S) \rightarrow B = X_{S+d}$


Continuum


Jet-like


- Veto pile-up γ based on timing info.
- Tag leptons with $1.10 < P_{\ell}^* < 2.25 \text{ GeV/c}$
- Suppress the continuum using BDT.
 - Topological variables: Thrust, Modified FWM
 - Kinematic variables: M_{miss}^2 , E_T

– Isolation and calorimeter variables for γ .

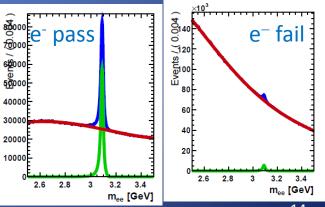


2014/7/17

qq

\mathcal{F}_{BELLE} B \rightarrow X_{s+d} γ , Background Calibration

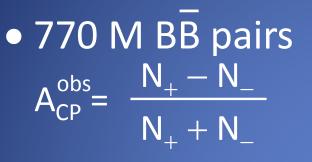
- Sources: - Continuum \Rightarrow off-resonance - π^{0} and η to $\gamma\gamma \Rightarrow$ Estimated from MC with correction factors in P_{π (η)}. Study π^{0} and η veto using BDT sideband. • Measure $\mathscr{B}(B \rightarrow X \pi^{0}/\eta)$ in data and MC $N_{ON} - \alpha_{off} N_{off}$ N_{MC}
 - Other BB background from MC.

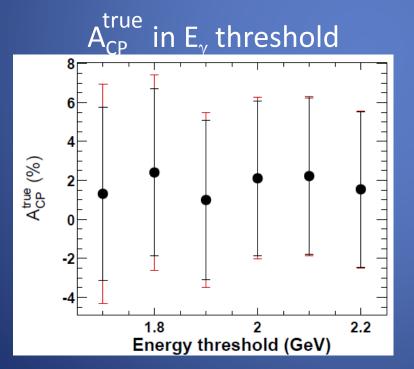

$\stackrel{\frown}{\longrightarrow} B \longrightarrow X_{s+d} \gamma, \text{ Wrong Tag Fraction}$

•
$$W = W_{osc} + W_{sec} + W_{misID}$$
 • B-B mixing $\chi_d = 0.187$
 $A_{CP}^{true} = \frac{1}{1-2W} A_{CP}^{meas}$ • W_{sec} from MC.
• $D^{*+} \rightarrow D^0 (K^- \pi^+) \pi^+$ for

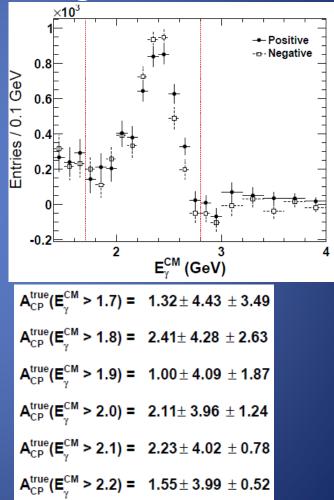
Detector bias

- Lepton ID Tag-and-probe using $J/\psi \rightarrow \ell^+ \ell^ \epsilon^{\pm} = \frac{N_{pass}}{N_{pass} + N_{fail}}$; $A_{LID} = \frac{\epsilon^+ - \epsilon^-}{\epsilon^+ + \epsilon^-}$ $= (0.11 \pm 0.07)\%$ $\begin{array}{c|c} {\rm Factor} & {\rm Value} \\ \\ \omega_{\rm misID} & 0.0069 \pm 0.0034 \\ \\ \omega_{\rm 2nd} & 0.0431 \pm 0.0036 \\ \\ \\ \omega_{\rm osc} & 0.0913 \pm 0.0015 \\ \\ \\ \hline \omega_{\rm total} & 0.1413 \pm 0.0052 \end{array}$

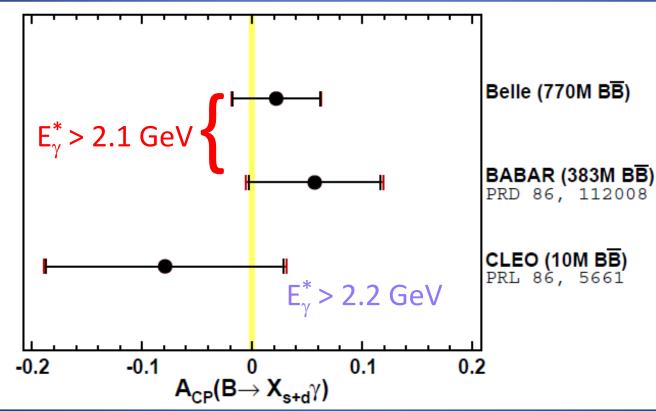

- Tracking Partially recon. D* \Rightarrow (-0.01±0.21)% - Asymmetry in BB background Data in E^{*}_v < 1.7 GeV \Rightarrow (-0.14±0.78)%



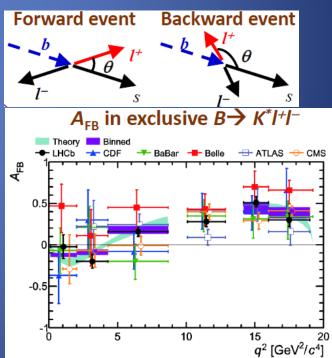
misID



$A_{CP}(B \rightarrow X_{s+d} \gamma)$, Preliminary



Background subtracted



Most precise measurement.
 Statistical uncertainty dominant
 A_{CP}(B→X_{s+d} γ) = (2.23 ± 4.02 ± 0.78)%

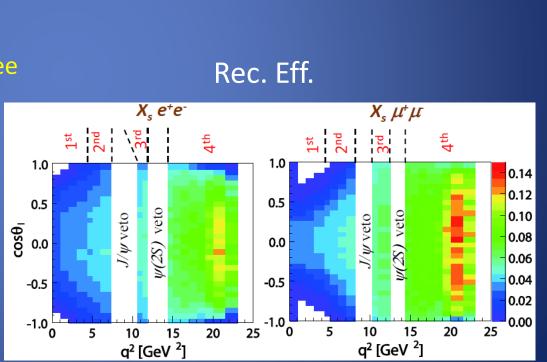
$B \rightarrow Xs \ \ell^+ \ell^-$

- The Xs $\ell^+\ell^-$ decay can be expressed with C₇, C₉ & C₁₀.
- probe new physics with observables as a function of q² (M²_{ℓℓ}): BF, A_{CP}, A_{FB}, A_{iso}, f_L... other variables
- $A_{FB} = \frac{N(\cos\theta > 0) N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}$ $\propto -Re \left[\left(2C_7^{eff} + \frac{q^2}{M_2^2} C_9^{eff} \right) C_{10} \right]$
- A_{FB} in $B \rightarrow K^* \ell^+ \ell^-$ has been measured by many experiments.
- Less theoretical uncertainty in inclusive B \rightarrow Xs $\ell^+\ell^-$.

$\mathcal{B} \to X_s \ell^+ \ell^-$, semi-inclusive

- 18 states for X_s, 1 K[±] (K_S) + up to 4 π (at most 1 π^0). Only 10 flavor specific states are used for A_{FB}. (M_{Xs} < 2.0 GeV/c²)
- Veto J/ ψ (ψ') $\rightarrow \ell^+ \ell^-$. \Rightarrow wider veto range for e⁺e⁻.
- Suppress background using Neural Bayes (23 variables).
 - Semi-leptonic B decays
 - Lepton vertex separation
 - Missing mass
 - Visible energy
- Peaking backgrounds ⇒
 ⇒ Included in the fit

• Continuum

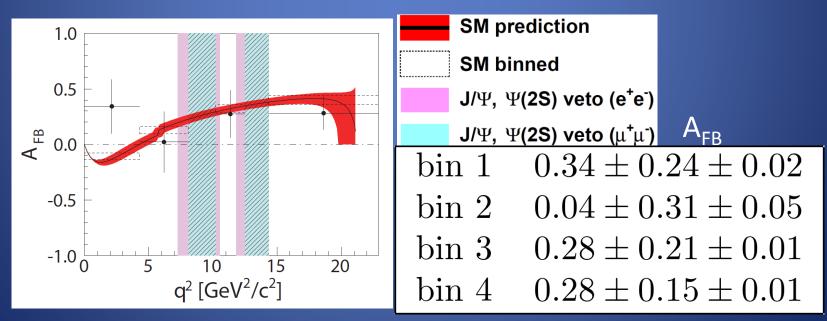

Shape variables

1. Leakage from $B \rightarrow J/\psi(\psi') X_s$ veto.

- ➡ Estimated using MC
- 2. Double miss ID from $B \rightarrow D^{(*)} n\pi$.
- 3. Swapped mis ID in $B \rightarrow J/\psi(\psi') X_s$
 - ⇒ Estimated using data

\mathcal{F}_{BELLE} B \rightarrow X_s $\ell^+\ell^-$, Signal Extraction

- Divide data into 4 q² regions to perform a fit.
- Correct A^{raw} to A^{true}. $A_{FB}^{true} = \alpha^{\mu\mu} \times A_{FB}^{raw, \mu\mu}$ = $\alpha^{ee} \times \beta \times A_{FB}^{raw, ee}$ α : scale factor due to rec. efficiency β : correction due to different J/ $\psi(\psi')$ veto range. Derive α using MC with various sets of C₇, C₉, C₁₀



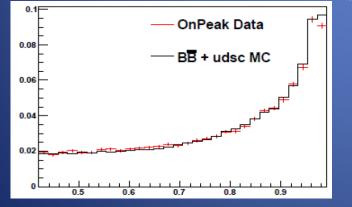
$A_{FB}(B \rightarrow X_{s} \ell^{+} \ell^{-})$, Results

- The measured A_{FB} values are consistent with the SM.
 - The deviation of the 1st bin is 1.8 σ .
 - Exclude A_{FB} <0 at q²> 10.2 GeV²/c² at 2.3 σ .

arXiv: 1402.7134; submitted to PRL

$B \rightarrow X_s \ell^+ \ell^-$, semi-inclusive

- Reconstruct 10 X_s states with 1K (K_S^0) + 0–2 π ($\geq 1 \pi^0$) for branching fraction and 7 self tagged states for A_{CP}. This 10 X_s states correspond to 70% of inclusive rate with M_{Xs} < 1.8 GeV/c².
- Extract the missing states and the states with M_{Xs}> 1.8 GeV/c² using JETSET fragmentation and theory predictions.
- Kinematic requirements:

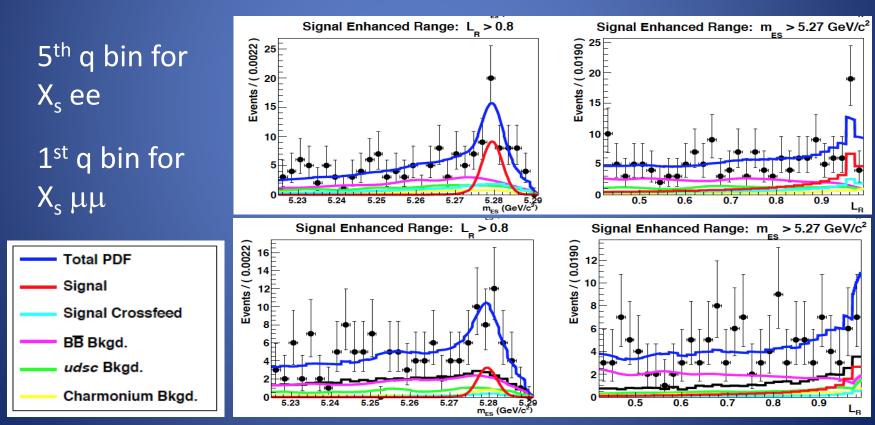

$$\begin{split} \mathsf{M}_{\mathsf{ES}} > 5.225 \; \mathsf{GeV/c^2}\,; \quad &-0.1 {<} \Delta\mathsf{E} < 0.05 \; \mathsf{GeV} \; \mathsf{for} \; \mathsf{X_see}\,; \\ &|\Delta\mathsf{E}| < 0.05 \; \mathsf{GeV} \; \mathsf{for} \; \mathsf{X_s} \mu \mu \end{split}$$

$B \rightarrow X_s \ell^+ \ell^-$, Analysis Strategy

- Use likelihood ratio defined from BDT output to distinguish signals and backgrounds.
- Veto J/ ψ and ψ '.
- Measure $d\mathscr{B}(B \rightarrow X_s \ell^+ \ell^-)/dq^2$ in 6 $q^2 \& 4 M_{\chi_s}$ bins.
- Measure A_{CP} (B $\rightarrow X_s \ell^+ \ell^-$) in 5 q² bins.

Likelihood ratio on J/ψ sample

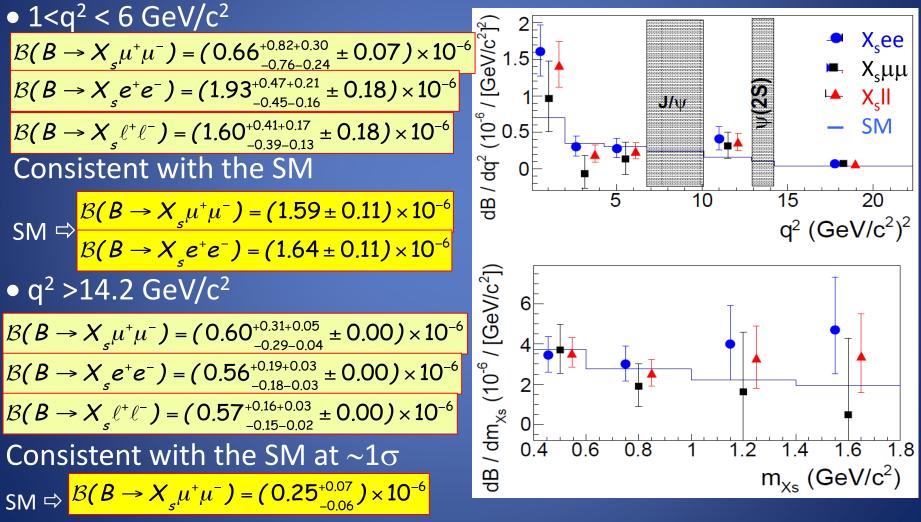
• Data sample: 471x10⁶ BB pairs


q^2 bin	$m^2_{\ell\ell}$ (GeV $^2/c^4$)	$m_{\ell\ell}$ (GeV/ c^2)
0	1.0 - 6.0	1.00 - 2.45
1	0.1 - 2.0	0.32 - 1.41
2	2.0 - 4.3	1.41 - 2.07
3	4.3 - 8.1	2.07 - 2.60
4	10.1 - 12.9	3.18 - 3.59
5	$14.2 - (M_B - M_K^*)^2$	$3.77 - (M_B - M_K^*)$

2014/7/17

$B \rightarrow X_s \ell^+ \ell^-$, Signal Extraction

• Extract signals from 2D ML fit on M_{ES} and LR

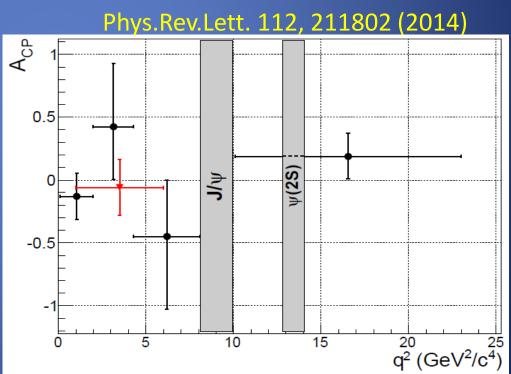

2014/7/17

EW and radiative penguin transitions

$\mathscr{B}(B \rightarrow X_s \ell^+ \ell^-)$, Results

Phys.Rev.Lett. 112, 211802 (2014)

2014/7/17


$A_{CP}(B \rightarrow X_{s} \ell^{+} \ell^{-})$, Results

Over the full q² range,

 $A_{CP}(B \rightarrow X_{s} \ell^{+} \ell^{-}) = 0.04 \pm 0.11 \pm 0.01$

Consistent with 0, as expected with the SM.

 A_{CP} in each q² is also consistent with 0

Summary

- Several $B \rightarrow X_s \gamma(\ell \ell)$ measurements are reported.
- Most precise semi-inclusive $\mathscr{B}(B \rightarrow X_s \gamma)$ from Belle
- Most precise $A_{CP}(B \rightarrow X_s \gamma)$ from BaBar First $\Delta A_{CP}(B \rightarrow X_s \gamma)$ and constraint on $Im(C_{8g}/C_{7\gamma})$
- Most precise $A_{CP}(B \rightarrow X_{s+d} \gamma)$ from Belle
- First $A_{FB}(B \rightarrow X_s \ell^+ \ell^-)$ from Belle
- First $\mathscr{B}(B \rightarrow X_s \ \ell^+ \ell^-)$ and $A_{CP}(B \rightarrow X_s \ \ell^+ \ell^-)$ from BaBar
- Expect precision measurements in Belle II. Full hadronic tag for inclusive analysis.

BACK UP

$B \rightarrow X_s \gamma$, Semi-inclusive

38 X_s states correspond to 70% of total.

Mode ID	Final State	Mode ID	Final State
1	$K^+\pi^-$	20	$K_{S}^{0}\pi^{+}\pi^{0}\pi^{0}$
2	$K_S^0 \pi^+$	21	$K^+\pi^+\pi^-\pi^0\pi^0$
3	$K^+\pi^0$	22	$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
4	$K_S^0 \pi^0$	23	$K^+\eta$
5	$K^+\pi^+\pi^-$	24	$K_S^0 \eta$
6	$K_{S}^{0}\pi^{+}\pi^{-}$	25	$K^+\eta\pi^-$
7	$K^+\pi^+\pi^0$	26	$K^0_S\eta\pi^+$
8	$K_{S}^{0}\pi^{+}\pi^{0}$	27	$K^+\eta\pi^0$
9	$K^+\pi^+\pi^-\pi^-$	28	$K_S^0 \eta \pi^0$
10	$K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}$	29	$K^+\eta\pi^+\pi^-$
11	$K^+\pi^+\pi^-\pi^0$	30	$K^0_S\eta\pi^+\pi^-$
12	$K^0_S \pi^+ \pi^- \pi^0$	31	$K^+\eta\pi^-\pi^0$
13	$K^+\pi^+\pi^+\pi^-\pi^-$	32	$K^0_S \eta \pi^+ \pi^0$
14	$K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	33	$K^+K^+K^-$
15	$K^+\pi^+\pi^-\pi^-\pi^0$	34	$K^{+}K^{-}K^{0}_{S}$
16	$K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	35	$K^+K^+K^-\pi^-$
17	$K^+\pi^0\pi^0$	36	$K^+K^-K^0_S\pi^+$
18	$K_{S}^{0}\pi^{0}\pi^{0}$	37	$K^+K^+K^-\pi^0$
19	$K^+\pi^-\pi^0\pi^0$	38	$K^+ K^+ K^0_S \pi^0$

2014/7/17

EW and radiative penguin transitions

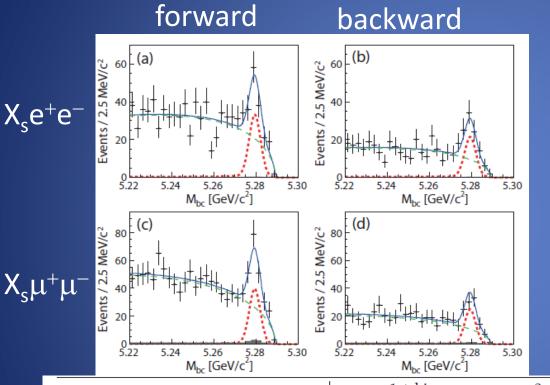

$\mathcal{B} \to X_s \ell^+ \ell^-$, semi-inclusive

TABLE I. The 18 hadronic final states used to reconstruct X_s . The 8 final states enclosed in parentheses are not used for the measurement of A_{FB} .

\bar{B}^0 decays	B^- decays
(K_{S}^{0})	K^{-}
$K^{-}\pi^{+}$ $(K_{S}^{0}\pi^{0})$	$K^{-}\pi^{0}$ $K^{0}_{S}\pi^{-}$
$K^{-}\pi^{+}\pi^{0}$ $(K^{0}_{S}\pi^{-}\pi^{+})$	$K^{-}\pi^{+}\pi^{-}$ $K^{0}_{S}\pi^{-}\pi^{0}$
$K^{-}\pi^{+}\pi^{-}\pi^{+}$ $(K^{0}_{S}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	⁰) $K^-\pi^+\pi^-\pi^0$ $K_S^0\pi^-\pi^+\pi^-$
$(K^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{0})(K^{0}_{S}\pi^{-}\pi^{+}\pi^{0})$	$(K^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-})(K^{0}_{S}\pi^{-}\pi^{+}\pi^{-}\pi^{0})$

$B \rightarrow X_s \ell^+ \ell^-$, Results

 $N^{ee} = 139.9 \pm 18.6$ $N^{\mu\mu} = 160.8 \pm 20.0$

- ----- Signal + cross feed
 - -- Combinatorial
- HIST Peaking background

The dominant systematic errors are α & β and peaking bkg.

Mbc [Gev/C]	Mpc [Gev/c]			
	1st bin	2nd bin	3rd bin	4th bin
q^2 range [GeV ² / c^2] $(B \to X_s e^+ e^-)$ $(B \to X_s \mu^+ \mu^-)$	[0.2, 4.3]	[4.3,7.3] [4.3,8.1]	[10.5,11.8] [10.2,12.5]	[14.3, 25.0]
$\mathcal{A}_{\mathrm{FB}}$	$0.34 \pm 0.24 \pm 0.02$	$0.04 \pm 0.31 \pm 0.05$	$0.28 \pm 0.21 \pm 0.01$	$0.28 \pm 0.15 \pm 0.01$
$\mathcal{A}_{\rm FB}$ (theory)	-0.11 ± 0.03	0.13 ± 0.03	0.32 ± 0.04	0.40 ± 0.04
$N_{ m sig}^{ee}$	45.6 ± 10.9	30.0 ± 9.2	25.0 ± 7.0	39.2 ± 9.6
$N^{ee}_{\mathrm{sig}} onumber \ N^{\mu\mu}_{\mathrm{sig}} onumber \ lpha^{ee}$	43.4 ± 9.2	23.9 ± 10.4	30.7 ± 9.9	62.8 ± 10.4
α^{ee}	1.289 ± 0.004	1.139 ± 0.003	1.063 ± 0.003	1.121 ± 0.003
$\alpha^{\mu\mu}$	2.082 ± 0.010	1.375 ± 0.003	1.033 ± 0.003	1.082 ± 0.003
β	1.000	1.019 ± 0.003	1.003 ± 0.000	1.000

$B \rightarrow X_s \ell^+ \ell^-$, semi-inclusive

Bin	Range	$B \rightarrow X_s e^+ e^-$	$B \to X_s \mu^+ \mu^-$	$B \to X_s \ell^+ \ell^-$	$A_{CPB \to X_s \ell^+ \ell^-}$
q_0^2	$1.0 < q^2 < 6.0$	$1.93^{+0.47+0.21}_{-0.45-0.16} \pm 0.18 \; (1.71)$	$0.66^{+0.82+0.30}_{-0.76-0.24} \pm 0.07$ (1.78)	$1.60^{+0.41}_{-0.39}{}^{+0.17}_{-0.13}\pm0.18$	$-0.06 \pm 0.22 \pm 0.01$
q_1^2	$0.1 < q^2 < 2.0$	$3.05^{+0.52+0.29}_{-0.49-0.21} \pm 0.35$ (1.96)	$1.83^{+0.90+0.30}_{-0.80-0.24} \pm 0.20$ (2.02)	$2.70^{+0.45}_{-0.42}{}^{+0.21}_{-0.16}\pm0.35$	$-0.13 \pm 0.18 \pm 0.01$
q_2^2	$2.0 < q^2 < 4.3$	$0.69^{+0.31+0.11}_{-0.28-0.07} \pm 0.07 \; (1.73)$	$-0.15^{+0.50+0.26}_{-0.43-0.14}\pm0.01~(1.80)$	$0.46^{+0.26}_{-0.23}{}^{+0.10}_{-0.06}\pm0.07$	$0.42^{+0.50}_{-0.42}\pm0.01$
q_{3}^{2}	$4.3 < q^2 < 6.8$	$0.69^{+0.31+0.13}_{-0.29-0.10} \pm 0.05 \ (1.53)$	$0.34^{+0.54+0.19}_{-0.50-0.15} \pm 0.03 \ (1.59)$	$0.60^{+0.27}_{-0.25}{}^{+0.10}_{-0.08}\pm0.05$	$-0.45^{+0.44}_{-0.57}\pm0.01$
q_{4}^{2}	$10.1 < q^2 < 12.9$	$1.14^{+0.42+0.22}_{-0.40-0.10} \pm 0.04$ (1.16)	$0.87^{+0.51+0.11}_{-0.47-0.08} \pm 0.03 \; (1.18)$	$1.02^{+0.32}_{-0.30}{}^{+0.10}_{-0.07}\pm0.04$	
q_{5}^{2}	$14.2 < q^2$	$0.56^{+0.19+0.03}_{-0.18-0.03} \pm 0.00$ (1.02)	$0.60^{+0.31+0.05}_{-0.29-0.04} \pm 0.00 \ (1.02)$	$0.57^{+0.16}_{-0.15}{}^{+0.03}_{-0.02}\pm0.00$	
q_{45}^2	$q_4^2\cup q_5^2$				$0.19^{+0.18}_{-0.17}\pm0.01$
$m_{X_s,1}$	$0.4 < m_{X_s} < 0.6$	$0.69^{+0.18+0.04}_{-0.17-0.03} \pm 0.00 \ (1.00)$	$0.74^{+0.25+0.04}_{-0.23-0.04} \pm 0.00 \ (1.00)$	$0.71^{+0.15}_{-0.14}{}^{+0.03}_{-0.03}\pm0.00$	
$m_{X_s,2}$	$0.6 < m_{X_s} < 1.0$	$1.20^{+0.34+0.10}_{-0.33-0.07} \pm 0.00 \ (1.00)$	$0.76^{+0.44+0.08}_{-0.40-0.07} \pm 0.00 \ (1.00)$	$1.02^{+0.27}_{-0.25}{}^{+0.06}_{-0.05}\pm0.00$	
$m_{X_s,3}$	$1.0 < m_{X_s} < 1.4$	$1.60^{+0.72+0.27}_{-0.69-0.19} \pm 0.05 \; (1.18)$	$0.65^{+1.16+0.27}_{-1.08-0.25} \pm 0.02 \ (1.18)$	$1.32^{+0.61}_{-0.58}{}^{+0.01}_{-0.15}\pm0.05$	
$m_{X_s,4}$	$1.4 < m_{X_s} < 1.8$	$1.88^{+0.76+0.71}_{-0.73-0.47} \pm 0.12$ (1.91)	$0.19^{+1.35+0.70}_{-1.25-0.50}\pm0.10~(1.91)$	$1.36^{+0.67}_{-0.63}{}^{+0.50}_{-0.34}\pm0.12$	
Total	$0.1 < q^2$	$7.69^{+0.82+0.50}_{-0.77-0.33}\pm0.50$	$4.41^{+1.31+0.57}_{-1.17-0.42}\pm0.27$	$6.73^{+0.70}_{-0.64}{}^{+0.34}_{-0.25}\pm0.50$	$0.04 \pm 0.11 \pm 0.01$