

The LHCb Upgrade

Alessandro Cardini / INFN Cagliari, Italy

on behalf of the

LHCb Collaboration

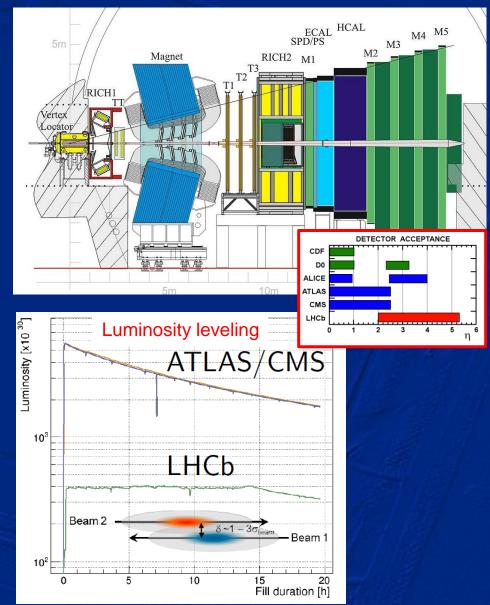
Beauty 2014 The 15th International Conference on B-Physics at Frontier Machines at the University of Edinburgh.

14th - 18th July 2014

Outline

- Introduction to LHCb
 - Design
 - Performances
- The LHCb upgrade
 - Motivations
 - Trigger & DAQ
 - Detector

Summary

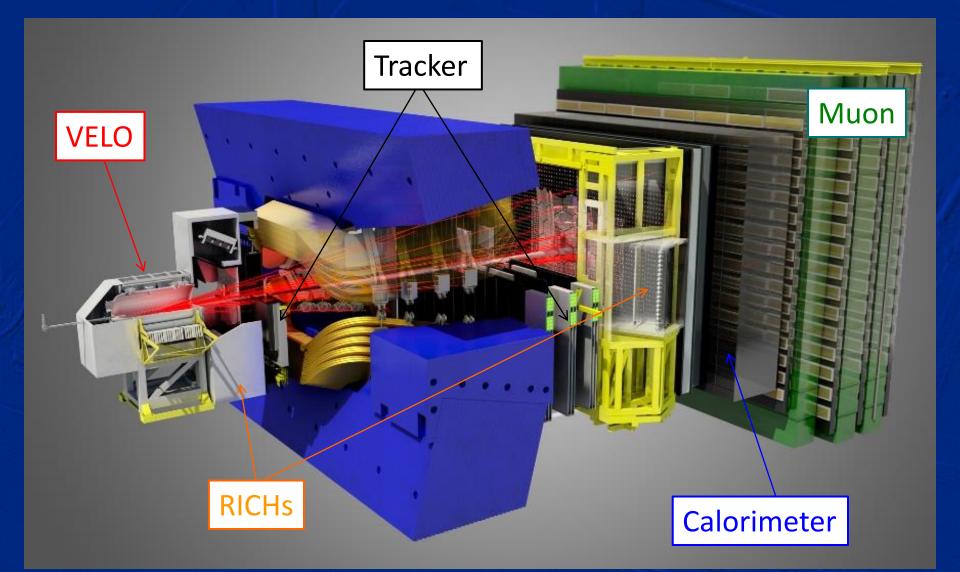


What is LHCb?

It's a dedicated heavy flavor experiment at LHC, designed to:

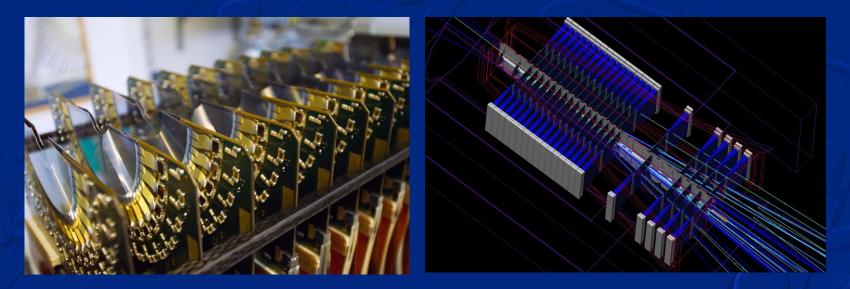
- measure the CP-violation in b sector
- study rare b- and c- hadron decays
- perform indirect searches for New Physics
- It's a forward spectrometer exploiting the huge production of beauty-pairs at small angles → 27% of b-pairs produced at 7 TeV collision energy are in the LHCb acceptance (2<η<5)
- Operates at fixed instantaneous luminosity

LHCb requirements

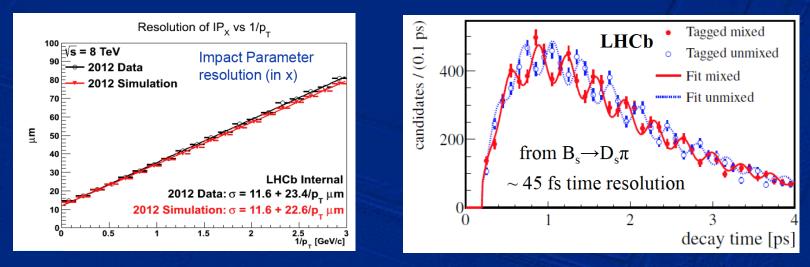

- Separate secondary decay vertices from primary production vertex → 20µm impact parameter resolution for high-p_t tracks
- Excellent momentum resolution: as low as 0.35% at 5 GeV/c (and still 0.55% at 100 GeV/c), which provides a mass resolution of 10 – 25 MeV/c²
- Excellent particle identification capabilities, to unambiguously identify photons, electrons, muons, pions, kaons, protons in the b-meson decay chain, essential to select rare beauty and charm exclusive decays

Efficient multi-stage trigger for leptonic and hadronic final states

LHCb subsystems overview

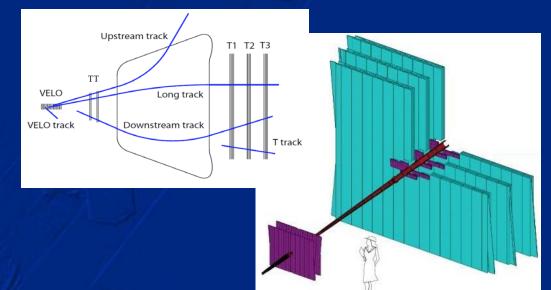


Beauty 2014, July 18th 2014

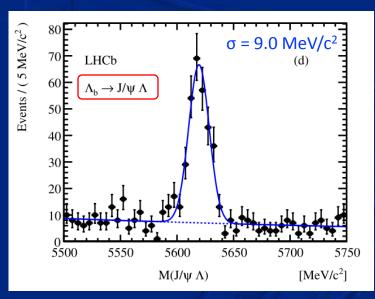


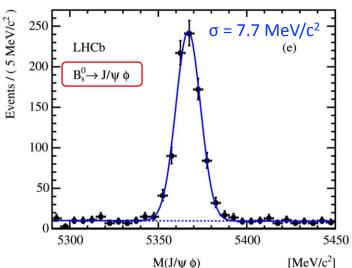
VErtex LOcator

Microstrips sensors with rd strips – closing around beam during data taking



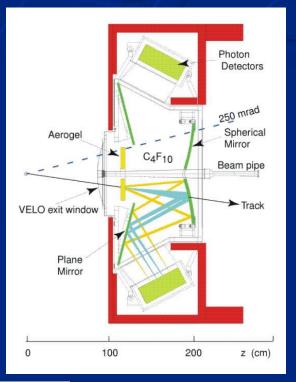
Beauty 2014, July 18th 2014

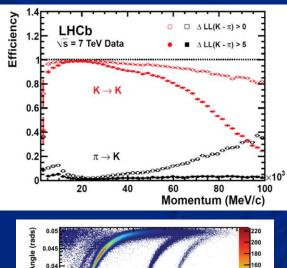

Tracking system

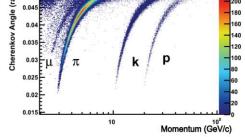


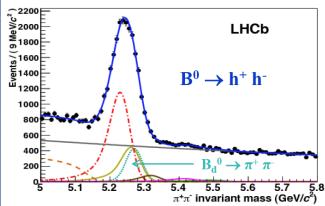
Various tracking stations (Si microstrips, straw tubes) and dipolar magnetic field of 4 Tm provide:

- Excellent mass resolution
- World's best mass measurements

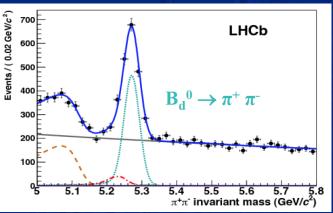

7

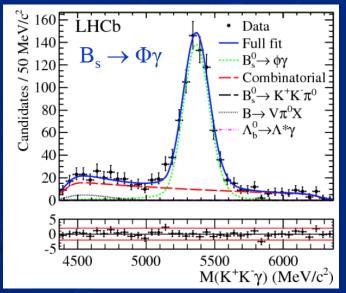






- 2 RICH detectors in LHCb
- Cherenkov light readout by photon detectors located outside geometrical acceptance
- Hybrid Photon Detectors readout with embedded 1 MHz R/O ASIC

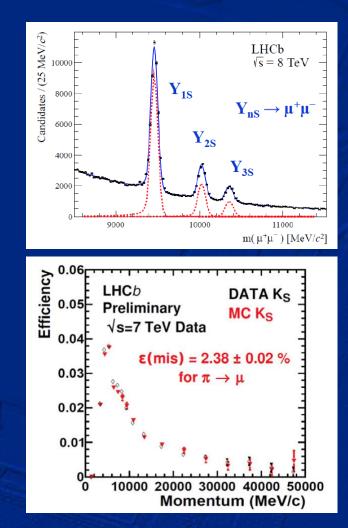



Using RICH information

Beauty 2014, July 18th 2014

Calorimeters and Muon System

Calorimeters

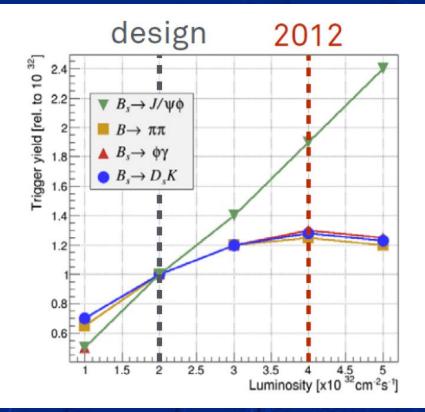

I N F N

- 4 subsystems (PS, SPD, ECAL, HCAL)
- Scintillating tiles + lead (ECAL) or iron (HCAL)
- PMT readout
- Input to high E_t trigger

Muon System

- 5 muon stations, multi-wire proportional chambers
- High muon detection efficiency (97.3%) with low misidentification (only 2.4% pions identified as muon)
- Input to level-0 high-P_t muon trigger

World best BR measurement: $(3.5 \pm 0.4) \ 10^{-5}$ with invariant mass resolution of about 94 MeV/c²

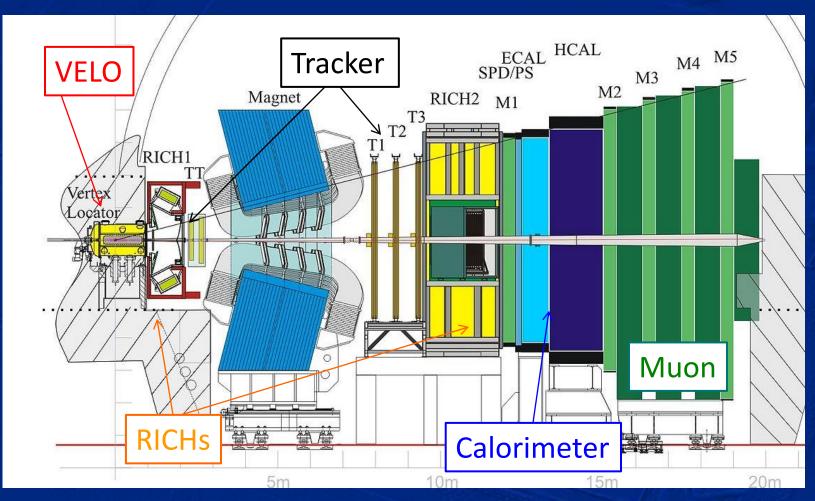

Beauty 2014, July 18th 2014

Why upgrade?

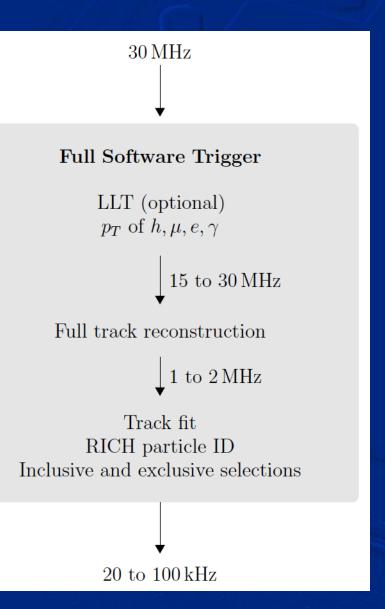
- No evidence for New Physics in Run1
 - Look for tiny deviation from SM predictions
 - more (x10) data required, aiming at experimental sensitivities comparable to theoretical uncertainties
- <u>The current 1 MHz level-0 trigger output is a</u> <u>severe limitation!</u>
- If we increase the luminosity
 - trigger yield of hadronic events saturates
 - need harder cuts on P_t and E_t due to the 1 MHz bandwidth limit
 - ➔ there's not a real gain in statistics
 - → ~5 fb⁻¹ in Run2
- Note that our upgrade <u>does not depend LHC</u> <u>upgrade</u>, we use a fraction of the available luminosity

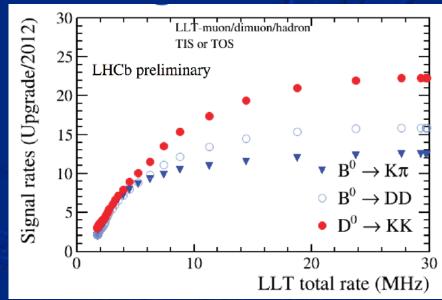
- Remove the level-0 hardware trigger
 - Readout an event every bunch crossing (40 MHz)
 - New front-end electronics (on-chip zero suppression)
 - New DAQ system
- Use an efficient fully software trigger accessing complete event information, running at the bunch crossing rate
- The high instantaneous luminosity of 2 10³³/cm²/s implies higher occupancies in all subsystems
 redesign several detectors to adapt them to new conditions
- Install by LS2 in 2018-2019

Upgrade scenario

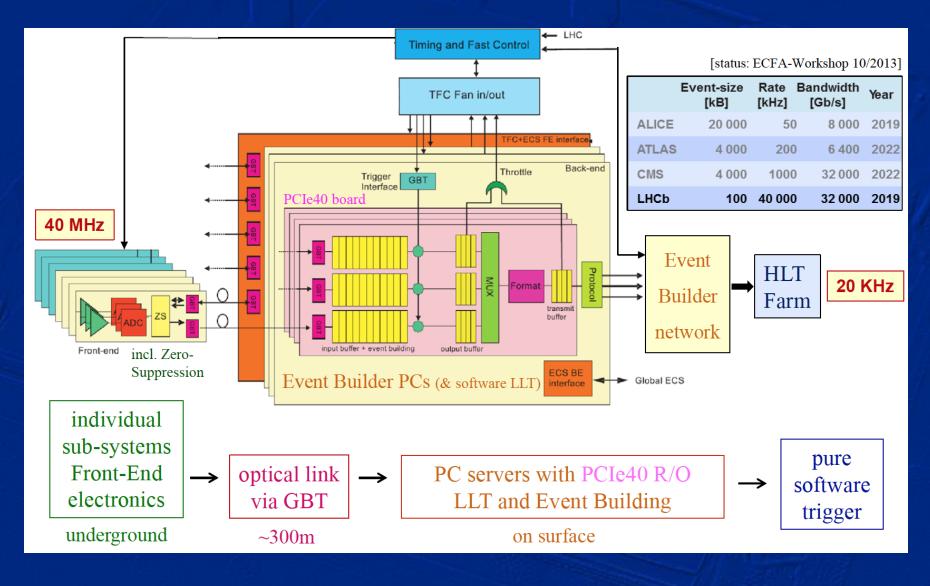

- Data taking conditions
 - Leveled instantaneous luminosity of 2.10³³/cm²/s
 - 30 MHz collisions
 - 20-100 kHz to disk
 - → ~5 fb⁻¹ per year
- Challenges
 - High pile-up
 - Large occupancies
 - event reconstruction is more difficult
 - more difficult PID
 - Radiation damage

The LHCb Upgrade


Fully software trigger + new DAQ + ...



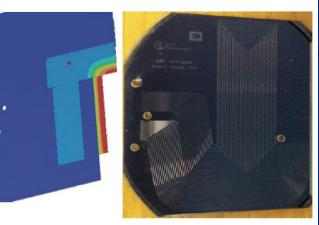
The software trigger


- Trigger farm: 50k logical CPU cores
- Offline-like reconstruction tuned to available time constraints
- Mixture of exclusive and inclusive selection algorithms
- LLT output rate progressively increases as trigger farms grows

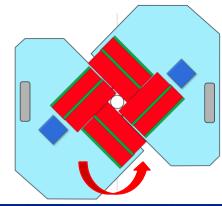
Beauty 2014, July 18th 2014

The 40 MHz R/O architecture

Upgraded VELO



• Challenges


- Very high particle rates
- Large data volumes: 20 Gbit/s/ASICs
- Highly non-uniform radiation damage (up to 8 10¹⁵ n_{eq}/cm² for 50 fb⁻¹)
- Reduce material budget
- Bring detectors closer to the beam axis:
 13.6 mm → 8.5 mm
- Technical choices
 - 256x256 pixels matrices, with 55 x 55 μm² pixels
 - Micro-channel CO₂ cooling
 - FE: Velopix (Timepix3 evolution, x8 faster)

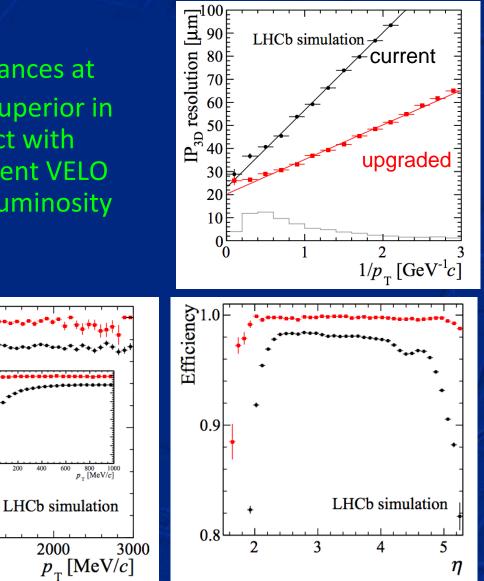
Micro-channel

CO₂ passes through channels etched in a silicon plate

45 deg. rotated new VELO option under discussion

Beauty 2014, July 18th 2014

New VELO Performance


Predicted performances at $2 \cdot 10^{33}$ /cm²/s are superior in almost every aspect with respect to the current VELO operating at high luminosity

> 0.86 0.82 0.80

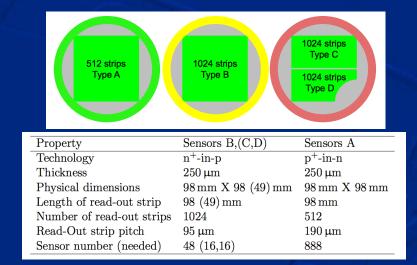
1000

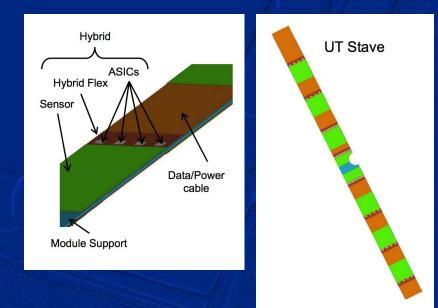
400

2000


Beauty 2014, July 18th 2014

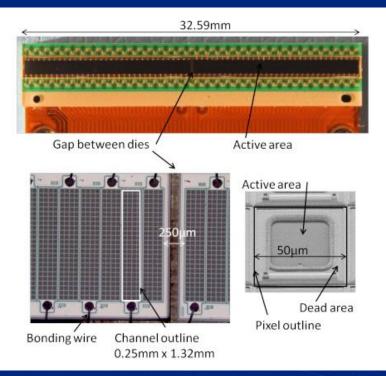
Efficiency

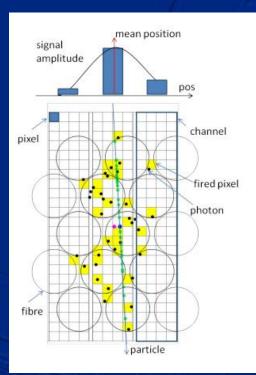

0.9


0.8^L

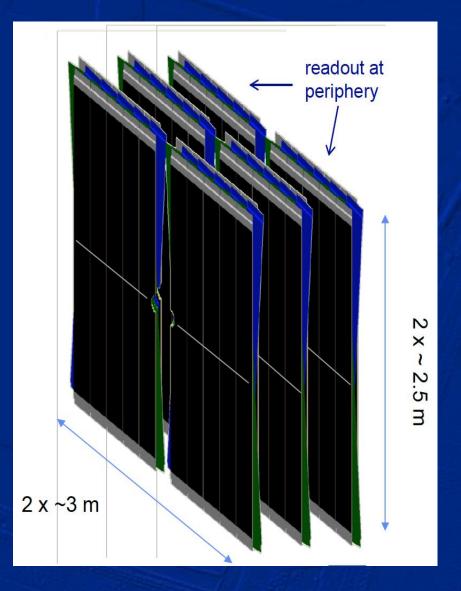
TT upgrade: Upstream Tracker (UT)

- 4 detection planes, stereo
- Silicon strip detector, 250 µm thick
- Segmentation and technology depends on expected dose and occupancy
- 40 MHz R/O via SALT ASIC


Fiber Tracker (FT) technology

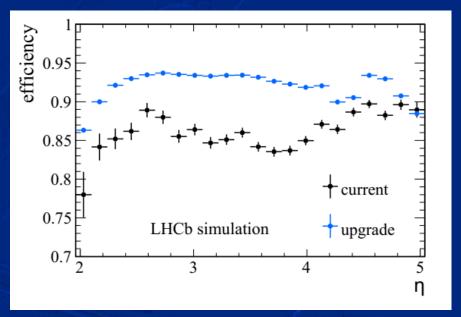


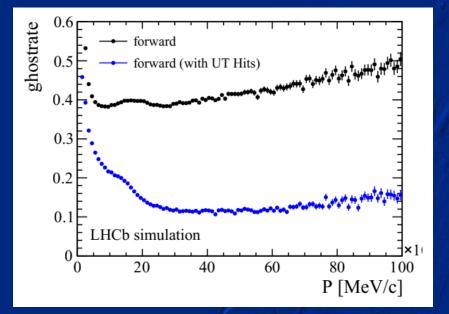
- Scintillating fiber mat (5-6 fibres thick)
- 250 μm diameter scintillating fibres
- R/O via 2x64 channel silicon photomultiplier (SiPM) array
- R/O by dedicated 128 channels 40 MHz PACIFIC ASIC


FT Design

- 12 detection layers in 3 stations
- Each station has XUVX layers (U,V: ±5°)

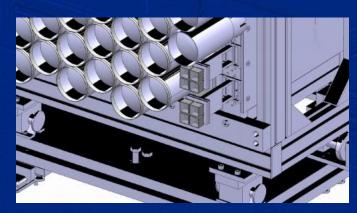
Advantages

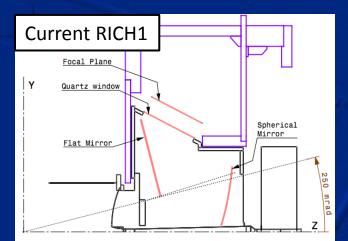

- Single technology easy to operate
- High granularity (250 μm) gives excellent x-position resolution (50-75 μm)
- Uniform material budget
- SiPM & R/O outside acceptance
- Challenges
 - Radiation damage to fiber → tested, ok
 - − SiPM rad. damage \rightarrow operate @ -40° C

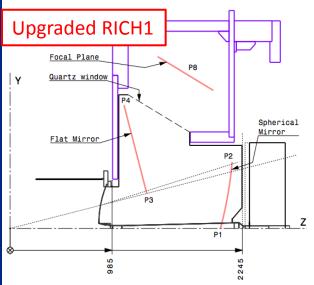


Efficiency for $B_s \rightarrow \phi \phi$

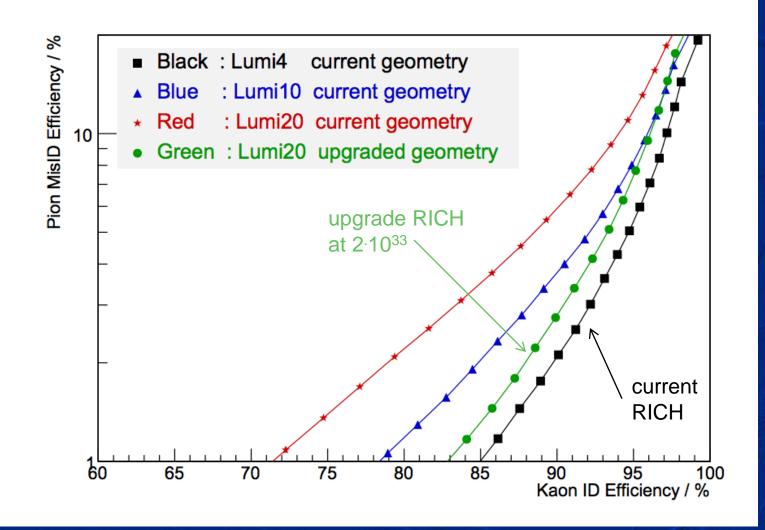
Ghost rate (long tracks) for $B_s \rightarrow \phi \phi$


FT → Improved tracking efficiency
UT → Improved background rejection


RICH Upgrade



- New R/O: 64 channel multi-anode PMTs
- 40 MHz CLARO front-end ASIC
- In addition, for RICH1:
 - Remove aerogel
 - improve optics to spread out Cherenkov rings on the focal plane



Upgraded RICH comb. performance

Upgraded RICH performance at 2.10³³ close to current one

Beauty 2014, July 18th 2014

Calorimeter System Upgrade

Occupancy and radiation issues

- Pre-shower and SPD will be removed (no more L0 calorimeter trigger)
- ECAL expected to be fine up to 20fb⁻¹, inner ECAL cells could be replaced at LS3
- HCAL OK up to 50 fb⁻¹
- Lower PMT gains to guarantee extended operation at HL
- New front-end electronics: ICECAL
- New back-end electronics, calculating ECAL and HCAL 2x2 cell energy for LLT

Delay Line

Slow Control

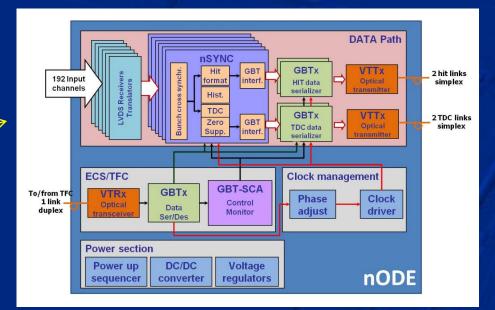
Technology: SiGe BiCMOS

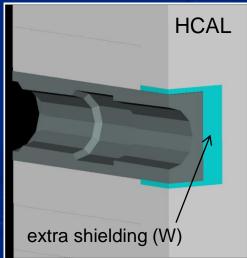
0.35um AMS

clip

Detector

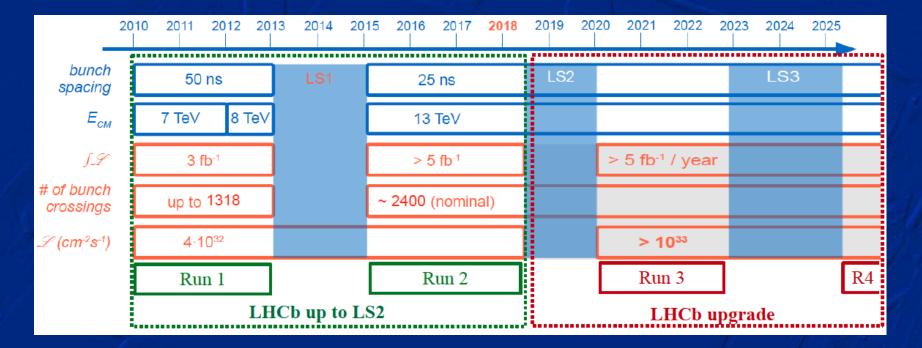
Clock




Muon system Upgrade

R/O and occupancy issues

- Muon detector front-end CARIOCA already operating at 40 MHz
- New off-detector board for efficient
 readout via PCIe40 common R/O boards
- Remove M1
 - no muon level-0 muon trigger
 - Very high occupancies
- Additional shielding behind HCAL to reduce rate in inner regions of M2
- Possible replacement of M2/M3 inner region detectors under study



Beauty 2014, July 18th 2014

The next years

- Run2 starts in 2015, the aim is to collect 5 fb⁻¹
- LS2: 18 months for full LHCb upgrade
- Then: collect ~5 fb⁻¹/year

Beauty 2014, July 18th 2014

Physics reach after the upgrade

Туре	Observable	Current precision	LHCb 2018	Upgrade (50 fb ⁻¹)	Theory uncertainty
B_s^0 mixing	$2\beta_s(B_s^0 \to J/\psi\phi)$ $2\beta_s(B_s^0 \to J/\psi f_0(980))$ $a_{\rm sl}^s$	0.10 [139] 0.17 [219] 6.4 × 10 ⁻³ [44]	0.025 0.045 0.6×10^{-3}	$ \begin{array}{c} 0.008 \\ 0.014 \\ 0.2 \times 10^{-3} \end{array} $	~ 0.003 ~ 0.01 0.03×10^{-3}
Gluonic penguins	$2\beta_{s}^{\text{eff}}(B_{s}^{0} \to \phi\phi)$ $2\beta_{s}^{\text{eff}}(B_{s}^{0} \to K^{*0}\overline{K}^{*0})$ $2\beta^{\text{eff}}(B^{0} \to \phi K_{s}^{0})$	– – 0.17 [44]	0.17 0.13 0.30	0.03 0.02 0.05	0.02 < 0.02 0.02
Right-handed currents	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma) \tau^{\text{eff}}(B_s^0 \to \phi \gamma) / \tau_{B_s^0}$	- -	0.09 5 %	0.02 1 %	<0.01 0.2 %
Electroweak penguins	$S_{3}(B^{0} \to K^{*0}\mu^{+}\mu^{-}; 1 < q^{2} < 6 \text{ GeV}^{2}/c^{4})$ $s_{0}A_{\text{FB}}(B^{0} \to K^{*0}\mu^{+}\mu^{-})$ $A_{\text{I}}(K\mu^{+}\mu^{-}; 1 < q^{2} < 6 \text{ GeV}^{2}/c^{4})$ $\mathcal{B}(B^{+} \to \pi^{+}\mu^{+}\mu^{-})/\mathcal{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})$	0.08 [68] 25 % [68] 0.25 [77] 25 % [86]	0.025 6 % 0.08 8 %	0.008 2 % 0.025 2.5 %	0.02 7 % ~0.02 ~10 %
Higgs penguins	$\begin{aligned} \mathcal{B}(B^0_s \to \mu^+ \mu^-) \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-) \end{aligned}$	1.5 × 10 ⁻⁹ [13] -	0.5×10^{-9} ~100 %	$0.15 \times 10^{-9} \\ \sim 35 \%$	0.3×10^{-9} ~5 %
Unitarity triangle angles	$\gamma(B \to D^{(*)}K^{(*)})$ $\gamma(B_s^0 \to D_s K)$ $\beta(B^0 \to J/\psi K_S^0)$	~10–12° [252, 266] – 0.8° [44]	4° 11° 0.6°	0.9° 2.0° 0.2°	negligible negligible negligible
Charm <i>CP</i> violation	A_{Γ} $\Delta \mathcal{A}_{CP}$	2.3×10^{-3} [44] 2.1×10^{-3} [18]	0.40×10^{-3} 0.65×10^{-3}	0.07×10^{-3} 0.12×10^{-3}	-

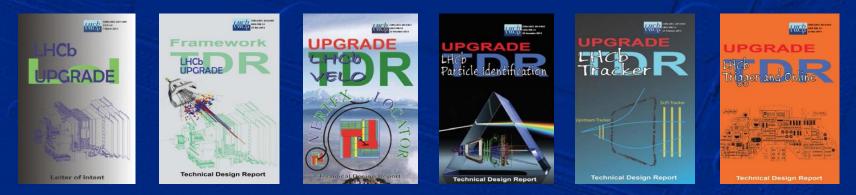
Beauty 2014, July 18th 2014

INFN

Istituto Nazionale di Fisica Nucleare

A. Cardini / INFN Cagliari

Eur. Phys. J. C (2013) 73:2373


28

Summary

- Thanks to its excellent performance LHCb is producing world best measurements in the beauty and charm sector
- The Upgraded LHCb trigger-less scheme, guaranteeing event processing at 40 MHz, will allow to collect 5 fb⁻¹ per year
- The upgrade will be performed in 2018-19 during LS2; data taking will start in 2020
- <u>The LHCb upgrade is mandatory to reach experimental precision of the order</u> <u>of theoretical uncertainties</u>
- The LHCb upgrade is fully approved

Beauty 2014, July 18th 2014

Thank you!

 4π view from Arthur's Seat (yesterday, ~06:00 am)

Beauty 2014, July 18th 2014

Spare slides

A few physics highlights

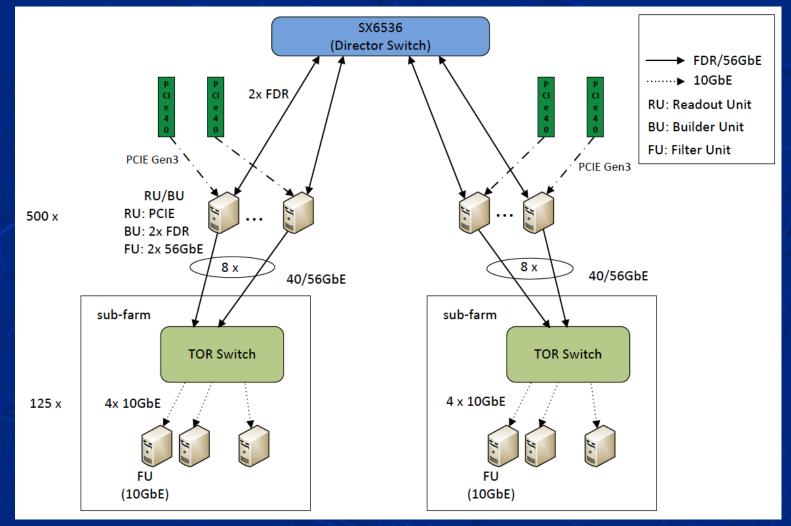
Arxiv 1404.1903v1 Candidates / (44 MeV/c²) 16 7 April 2014, subm. PRL $B_s \rightarrow \mu^+ \mu^-$ Ħ Exotic Z(4430)⁻ ---14 LHCb Candidates / (0.2 GeV²) BDT>0.7 12 Ħ LHCb 10 8 3 fb⁻¹ $200 - 1.0 < m_{K^+\pi^-}^2 < 1.8 \text{ GeV}^2$ PRL 111 (101805) 2013 6 100 4 0 5000 5500 $m_{\mu^+\mu^-}$ [MeV/ c^2] 18 20 16 $1/N \times dN/dcos\theta$ 0.0 $1/N \times dN/dcos\theta$ 0.8 0.6 polarization ν PRL 112 (161801) 2014 in b \rightarrow sy (5.2 σ) -- LHCb -- BaBar -- Belle LHCb $R_{\rm K}$ Lepton Universality 0.4 0.4 0.2 0.2 1.5 [1.1,1.3] GeV/c2 [1.3,1.4] GeV/c² 0Ľ -1 -0.5 0 0.5 -0.5 0.5 -1 cosθ cosθ $1/N \times dN/dcos\theta$ 0.8 0.6 $1/N \times dN/dcos\theta$ 8.0 9.0 LHCb LHCb 0.5 Arxiv 1406.6482v1 0.4 0.4 25 June 2014, subm. PRL 0^{L}_{0} 0.2 0.2 10 15 [1.4,1.6] GeV/c² [1.6,1.9] GeV/c² 5 0L -1 -0.5 0 0.5 -0.5 0.5 cosθ cosθ

Beauty 2014, July 18th 2014

 $m^{22}_{\psi'\pi^{-}}$ [GeV²]

LHCb

SM


20

 $q^2 \,[{
m GeV^2/c^4}]$

The new DAQ

Bidirectional event-building scheme uses FDR Infiniband for event-building and Ethernet for event distribution

Beauty 2014, July 18th 2014