

Study of W' -> μ v at 14 TeV for CMS high-eta upgrade with GEM (GE1/1)

Asmaa Fawzi Ali Hassan

(Helwan University)

4th School on High Energy Physics

WP1-EENP2

29/4/2014

OUTLINE

- CMS Detector at LHC
- Muon System
- LHC Upgrade
- GEM (Gas Electron Multiplier)
- W'-> μ ν (GEN-SIM-RECO)
- Analysis Cut
- Some Kinematics of W'-> μν (GEN and RECO Level)
- Tag and Probe Method
- Conclusion

CMS Detector

The Compact Muon Solenoid (CMS) experiment is one of two large general-purpose particle physics detectors built on the Large Hadron Collider (LHC) at CERN in Switzerland and France.

The main goals of the experiment are:

- to explore physics at the TeV scale.
- to study the properties of the recently found Higgs boson.
- to look for evidence of physics beyond the standard model, such as supersymmetry, or extra dimensions.
- It contains subsystems which are designed to measure the energy and momentum of photons, electrons, muons, and other products of the collisions.
- Tracker
- Electromagnetic Calorimeter (ECAL)
- ✓ Hadronic Calorimeter (HCAL)
- ✓ Muon System

Muon System

- The muon system, designed to identify muons correctly and reconstruct their momenta and detecting muons is one of CMS's most important tasks.
- The CMS muon system consists of three detectors interleaved with iron return yoke plates:
- ✓ Drift Tubes (DT) in the barrel region ($|\eta|$ <1.2).
- ✓ Cathode Strip Chambers (CSC) in the endcap region (0.9< $|\eta|$ <2.4).
- **Resistive Plate Chambers (RPC)** in both the barrel and endcap regions ($|\eta|$ <1.6).
- The Drift Tubes and the Cathode Strip Chambers are used for muon tracking while the Resistive Plate Chambers used for muon triggering.

LHC Upgrade

- 2010-2012 : 7-8 TeV (L = $6x10^{33}$ cm⁻²s⁻¹)
- 2013-2014 : Long Shutdown 1 (LS1)
- 201 -2016 : 14 TeV (L = 10^{34} cm⁻²s⁻¹)
- 2017-2018 LS2
- 2018-2020: 14 TeV at high luminosity (L = $2x10^{34} \text{ cm}^{-2}\text{s}^{-1}$)
- >2020 ... : 14 TeV at high luminosity ($L > 2x10^{34} \text{ cm}^{-2}\text{s}^{-1}$)

- It is planned to install GEM in the high-eta region $(1.6 < \eta < 2.1)$ in the upgrade of the CMS muon system in the second long shutdown (LS2).
- Including GEM (GE1/1) might be helpful in improving the acceptance of the detector and the muon resolution on each search with muons.
- CMS is optimized not only for SM searches, but also for new physics searches, especially the searches with muons.
- Interested in search of W'->μν channel.

GEM (Gas Electron Multiplier)

- The Gas Electron Multiplier (GEM) is a type of gaseous ionization detector used in nuclear and particle physics and radiation detection.
- GEM is constructed of 50-70 μm thick Kapton foil clad in copper on both sides with a regular pattern of densely spaced holes, an electric field is formed which focuses inside the holes where it is strong enough for gas amplification.
- When a single electron entering any hole will create an avalanche containing 100-1000 electrons.
- then electron enter second GEM to provide an additional stage of amplification.

$W' \rightarrow \mu \nu$ (GEN-SIM-RECO)

- CMSSW release: CMSSW_6_2_0_SLHC5
- GlobalTag: "auto:upgrade2019"
 CMSSW automatically choose globaltag = DES19_62_V8::All and geometry [which include GEM]
- Samples: Signal samples with GEM (PU0)
 (W' mass 3000, 6000 GeV)
- Need to check out packages listed here:
 https://twiki.cern.ch/twiki/bin/view/MPGD/
 GemSimulationsInstructionsCMSSW

reco::Muon

reco::PFMET

Analysis Cut

Selection criteria (based on AN2012_423 and Muon POG)

✓ good primary vertex
(!isFake && ndof > 4 && abs(z) <= 24 && position.Rho <= 2)</p>

✓ High pT Muons

- (muon->isGlobalMuon()) && (muon->isTrackerMuon())
- (muon->globalTrack()->hitPattern().numberOfValidMuonHits() > 0)
- (muon->globalTrack()->hitPattern().numberOfValidPixelHits() > 0)
- (muon->globalTrack()->hitPattern().trackerLayersWithMeasurement() > 5)
- (muon->numberOfMatchedStations() > 1)
- (dxy < 0.2) (transverse impact parameter)
- (dz < 0.5) (longitudinal impact parameter)

For W' Mass 6000 GeV

Mass VS Eff*Acc (Trigger 17)

Mass VS Eff*Acc (Trigger 21)

Event Display

Muon Pt & Muon Eta (After selection criteria)

Tag and Probe Method

Tag and Probe Overview

- Tag and probe is a data driven technique used to calculate efficiency of identification, isolation or trigger.
- In order to calculate the efficiency one needs a mass resonance (i.e. J/psi, upsilon or Z).
- The Tag has very tight selection criteria and a very low fake rate.
- The Probe has looser criteria.
- The Passing Probe has tighter criteria than the probe, but not tighter than the Tag.

Tag and Probe Method

Tag and Probe Workflow

Make TnP Trees

- By combining tags and probes into TnP pairs
- Centrally produced

Analyze TnP Trees

- by defining the binnings and num and denom definitions.
- Make the efficiency plots.

Tag and Probe Method (2)

Tag and Probe Exercise for HZZ41

- CMSSW release: CMSSW_5_3_7
- Need packages listed here:
 https://twiki.cern.ch/twiki/bin/viewauth/CMS/
 SWGuideCMSDataAnalysisSchoolHZZ4lSearchExercise
- Copy Files: /afs/cern.ch/user/p/piet/public/CMSDAS2013/tnp/
- Input File: tnpZ_run2012A_13Jul2012_withEAlso_DAS.root
- Configuration Files :

```
TnP_Muon_Z_DATA_53A_Loose2012_from_Tracks_pt_abseta.py
TnP_Muon_Z_MC_53A_Loose2012_from_Tracks_pt_abseta.py
```

Output Files:

```
TnP_Muon_Z_DATA_53A_Loose2012_from_Tracks_pt_abseta.root TnP_Muon_Z_MC_53A_Loose2012_from_Tracks_pt_abseta.root
```

Run: root.exe -b -l -q MuonID_PT.C+

Tag and Probe Method (3)

Loose 2012 Muon ID

- Understanding MET variables, how to clean MET, and how to select W events.
- Produce new TnP trees rely on W events.
- Make the efficiency plots.

Conclusion

- A GEM Detector System is used for an Upgrade of the CMS Muon Endcaps covering the pseudorapidity range of $1.6 < \eta < 2.1$.
- GEM would be helpful with
 - ✓ improved eta coverage
 - ✓ better muon resolution
 - ✓ better muon isolation for high occupancy environment

Next Step

- Complete the analysis code for W'-> μ v with GEM in the RECO level.
- Produce new TnP trees rely on W events.
- Make the efficiency plots.

