
FCC – hh

Daniel Schulte FCC-hh kick-off meeting – March 2014

FCC-hh Study Scope

FCC-hh Daniel Schulte FCC-hh kick-off meeting, March 2014

Goal for First Phase

- Goal is to have a baseline by early 2015
 - Try to have input end of 2014 to have time for discussions
- Should aim for:
 - Baseline
 - Forward-looking but reasonable risk
 - Required R&D for CDR identified
 - Specific alternatives
 - e.g. cost reduction/performance improvement, but higher risks require additional R&D
 - E.g. lower risk but less performance/higher cost, fallback solution
 - Identified specific R&D

Workplan for First Phase

- FCC will be a global collaboration
- It will need some time to form this collaboration
 - Non-committing letters of interest end of May
 - Formal agreements in September
 - EU design study submission in September
- But need to work on the baseline already now
 - Preparation of baseline
 - Identification of R&D needs for CDR
 - Preparation of technical scope of the collaboration
- In particular senior experts required
- Will use this series of meetings for this goal

Note on Organisation

- Will start with this meeting (FCC-hh-design)
 - Covers all aspects of the hadron collider ring
- Will start other meetings
 - When this meeting becomes too loaded
 - When a critical mass is available for specific topics
 - When a subject requires detailed interaction of experts
- Examples
 - Beampipe meeting (already exists)
- Like to maintain mixture of different expertises
 - Interfaces and integration are critical
 - Link between technical experts and FCC-hh should be done here

Baseline Design

Physics requirements

• Have some first requirements, iterations will be needed

Baseline parameters

• First document exists, further improvement needed

Baseline layout

Injection requirements / injector system design

- Baseline parameters for HE-LHC
- Staging scenarios

Rational for Parameter Choice

- Put together something that is reasonable
 - Somewhat conservative
 - With some aggressive choices to avoid excessive cost
 - To criticise and improve
 - To guide the design work and identify challenges
 - Seed of the baseline
- More aggressive choices will be considered as alternatives
 - When more R&D is required
 - When they involve a performance/cost trade-off
 - <u>http://indico.cern.ch/event/282344/material/3/</u>

Authors:

A. Ball, M. Benedikt, L. Bottura, O. Dominguez, F. Gianotti, B. Goddard, P. Lebrun, M. Mangano, D. Schulte, E. Shaposhnikova, R. Tomas, F. Zimmermann

Physics Parameters

	LHC	HL-LHC	HE-LHC	FCC-hh
Cms energy [TeV]	14		33	100
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	5	5	5
Bunch distance [ns]	25			25 (5)
Background events/bx	27	135	147	170 (34)
Bunch length [cm]	7.5	7.5	7.5	8

- Two main experiments sharing the beam-beam tuneshift
 - Two reserve experimental areas not contributing to tuneshift
- Currently assume 25ns as baseline
 - May be able to reduce bunch spacing and background
- Might be able to increase bunch length
 - Will explore this if experiments find it useful
- 80% of circumference filled with bunches

Basic Machine Parameters

	LHC	HL-LHC	HE-LHC	FCC-hh
Dipole field [T]	8.33		20	16 (20)
Magn. Aperture [mm]	56		40	40
Arc fill factor [%]	79		79	79
Straight section	8x0.5km		16.8km	
Total length	26.7km		100(83)km	

- Need to determine overall layout
 - LHC-type with 12 insertions (1.4km average, pairwise same length)
 - Racetrack-type with two almost straight sections (each 8.4km)
- Fill factors include dispersion suppressors (80.5% in the cell)
- Ambitious magnet strength goal 16T (Ni₃Sn) or 20T (with high temperature superconductor)
- Ambitious aperture goal

Beam Parameters

	LHC	HL-LHC	HE-LHC	FCC-hh
Bunch charge [10 ¹¹]	1.15	2.2	1	1 (0.2)
Norm. emitt. [µm]	3.75	2.5	1.38	2.2(0.44)
IP beta-function [m]	0.55	0.15	0.35	1.1
IP beam size [µm]	16.7	7.1	5.2	6.8 (3)
RMS bunch length [cm]	7.55	7.55	7.55	8

- Values in brackets for 5ns spacing
- Same values for 16T and 20T design
- Beam-beam tuneshift for two IP 0.01
- Beta-function at IP scaled with sqrt(E) from one LHC insertion line design with 0.4m (some safety margin)
 - Beam current
 - Bunch charge
 - Emittance as function of bunch charge

FCC-hh Daniel Schulte FCC-hh kick-off meeting, March 2014

Synchrotron Radiation

	LHC	HL-LHC	HE-LHC	FCC-hh
Dipole field [T]	8.33	8.33	20	16 (20)
Synchr. Rad. in arcs [W/m/aperture]	0.17	0.33	4.35	28 (44)
Eng. Loss p. turn [MeV]	0.007		0.2	4.6 (5.9)
Crit. eng. [keV]	0.044		0.575	4.3 (5.5)
Total synr. Power [MW]	0.0072	0.0146	0.2	4.8 (5.8)
Long. Damp. Time [h]	12.9		1.0	0.54 (0.32)
Transv. Damp. Time [h]	25.8		2.0	1.08 (0.64)

- Values in brackets for 20T magnet field
- Radiation given by beam energy and dipole field
- Leads to damping of the longitudinal and transverse emittance
- Leads to significant power load on the beam screen

Operation

	FCC-hh
Luminosity lifetime [h]	19.1
	(15.9)
Turn-around time [h]	5
Optimum run time [h]	12.1 (10.7)
Int. lumi / day [fb ⁻¹]	2.2 (2.1)

- Values in brackets for 20T magnet field
- Beam lifetime due to burn-off considered
- Assume to keep transverse emittance proportional to charge
- Assume longitudinal emittance is kept constant
- Average luminosity is about 50% of maximum

Physics Requirements Topics for 2014

- Review the specifications for completeness and identify potential issues, if any
 - E.g. space requirements, L*
- Alternative parameter sets need to be investigated
 - E.g. 5ns spacing (other spacings may be possible)
 - Less background per crossing, but time resolution required in detectors
 - Ultimate luminosity limit
 - Requires detector development
 - Optimisation of average/maximum luminosity
 - Currently about 50%
 - E.g. follow beam burn-off with emittance and betafunction (i.e. constant luminosity)

Baseline Parameters Topics for 2014

- Explore whether additional design drivers and critical issues exist that need to be integrated into the baseline parameter definition.
- Verify that the target parameters appear achievable based on the existing studies, e.g.:
 - Which beam pipe radius is required and what is the magnet aperture?
 - Can 80% of the ring be filled with bunches?
 - Turn-around time
- Define several parameters, e.g.:
 - Which beam-beam separation and mitigation techniques are necessary?
 - RF voltage

FCC-hh Daniel Schulte FCC-hh kick-off meeting, March 2014

Baseline Parameters Topics for 2014

- Explore the possibility to improve the design parameters to reduce the risk, power consumption or cost or to increase the performance. E.g.:
 - Can the beam charge be reduced to minimize synchrotron radiation load and machine protection/ radiation issues?
 - This requires a reduction of the beta-functions at the collision point or an increase in beam-beam tuneshift
 - A fast turn-round is also important to maintain high average luminosity
 - Alternative parameter sets planned
 - e.g. $\beta^*=0.55m$, N=0.5x10¹¹, $\epsilon=1.1\mu m$

$P_{synrad} \mu I \mu b^* / x \, L \mu t_{lumi} \, L$

Baseline Layout Topics for 2014

- What is the overall layout of the tunnel, e.g. racetrack vs. LHCtype or something in between?
- Do we need one or two beam dumps/extractions?
- How does the injection layout look like? In particular, how does it constrain the collider layout and integration into the site?
- Do we need short cuts between different parts of the tunnel for feedback or other purposes?
- Is a single tunnel or a double tunnel better?
- Which is the tunnel diameter(s)?
- Where are shafts located?
- The maximum acceptable sector length and design of the connection between sectors (cryogenics, magnets, ...)

Baseline Layout Topics for 2014

- For the layout definition an evaluation of the design requirements and a first lattice design is essential for all relevant parts of the machine. In particular:
 - Arcs
 - Collimation
 - Experiment insertions
 - Extraction and injection
 - Other lines (RF, reserve experiments, short straight section bends for racetrack)
 - Integration of the lattices and verification of the performance of the combined system including intensity and loss related limitations

Arc Fill Factor and Beta-function

- Current first assumptions:
 - Same arc fill factor as in LHC
 - C More in Bernhardt's talk
 - 80.5% in the regular arc cell
 - 79% including the dispersion suppressors
 - Can use the same cell layout and phase advance
 - Scaling all lengths in a cell one finds

$$\frac{Ea}{b^2 B_{poletip}} = const \bowtie b \mu \sqrt{\frac{Ea}{B_{poletip}}}$$

- Cell length (and beta-function) about 1.6 times longer than in LHC
 - Magnet aperture is important

Insertions

- Two main experiments
- Two additional experiments
- Injection insertion
- Extraction insertion
 - Do we need two?
- Two collimation insertions
 - Is this a good number?
- RF insertion
 - Can this be combined with some other line?
- Total 9
 - But some uncertainty

Racetrack vs. LHC-type layout

- For LHC-type layout can adjust length of insertions pairwise
 - Assumed an average of 1.4 km for insertions
- Can combine more than one insertion into a single straight section
 - SSC had racetrack with 4 experiment/utility lines per side
 - Separated by small arcs
 - Local compensation of experimental insertion chromaticity
- We need to review the length requirements for our insertions
 - SSC assumed 4x2.4km per side (at 40 TeV cms)
 - We need first order design
- We need to then put them together
 - Check which is the best way

Insertion Length

• Current first assumption:

$$b \mu L_{whatever} \mu \sqrt{E}$$

- In this case the same technology can be used
- Optics design is simply scaled but with same difficulty
 - Second order differential equation
 - Example: transverse separation by kickers

$$Dx_{1} = \frac{1}{2}const \frac{B}{E_{1}}L_{1}^{2} = \frac{1}{2}const \frac{B}{(E_{1}/E_{0})E_{0}} \left(\sqrt{E_{1}/E_{0}}\right)^{2}L_{0}^{2} = \frac{1}{2}const \frac{B}{E_{0}}L_{0}^{2} = Dx_{0}$$

- Smaller bams make some difference
- Using LHC insertions of a bit more than 500m, one finds 1400m
 - But different technologies
 - Collimation scales different

Baseline Injection Topics for 2014

- From where and in which sequence will the beam be injected?
 LHC, 100km ring, SPS, ...
- What are the beam energy, emittance and other key parameters?
- This requires addressing:
- The lowest energy accessible with the magnets (and power supply). With first consideration of potential field quality, dynamic aperture, mitigation techniques, speed of the ramp.
- The beam stability at injection (collective effects and their mitigation, in particular impedance and feedback)
- Injection sequence, how many bunches can be injected at once

Conclusion

- Let us start the technical discussion with the lattices today
- Other subjects will be discussed in subsequent meetings
 - Try to focus on one subject at a time
- Aim for a meeting every other week
- Need to review the time slot
 - Conflict with LHC meetings
 - Choose another day, same time?

