

Improving (or by-passing) PDF uncertainties via W,Z measurements

Maarten Boonekamp Artemis workshop, 3/7/8

July 3, 2008

Maarten Boonekamp, CEA-Saclay

Outline

- Cross-section measurements : single process
 - □ Luminosity
 - □ Efficiency (scale, resolution...)
 - □ Acceptance
- Ratios
 - Cross-normalizing experiment
 - □ Cross-normalizing theory
- **Examples:**
 - Z as case study
 - Applications to W and high-mass quark-induced processes
- Discussion

Example selections : $Z \rightarrow ee$, $\mu\mu$

□ Events (/10⁴) in 50 pb⁻¹

Selection	$Z \rightarrow ee$	jets
Trigger	6.70 ± 0.01	3110 ± 40
$p_T > 15 \text{ GeV}, \eta < 2.4, 80 \text{ GeV} < M_{ee} < 100 \text{GeV}$	2.76 ± 0.01	11.1 ± 0.8
Electron ID	2.64 ± 0.01	0.8 ± 0.2
Isolation	2.48 ± 0.01	0.2 ± 0.1

Selection	$Z ightarrow \mu \mu$	$b\overline{b} \rightarrow \mu\mu X$	W ightarrow au v	Z ightarrow au au
Trigger	3.76 ± 0.01	10.08 ± 0.04	36.7 ± 0.1	0.09 ± 0.01
2 muons +				
opp. charge	3.33 ± 0.01	3.00 ± 0.04	1.14 ± 0.02	0.04 ± 0.01
$M_{\mu\mu}$ cut	3.04 ± 0.01	0.26 ± 0.01	0.04 ± 0.01	$(14 \pm 4) \times 10^{-4}$
p_T cut	2.76 ± 0.01	0.125 ± 0.001	0.004 ± 0.001	$(11 \pm 4) \times 10^{-4}$
Isolation	2.56 ± 0.01	$(18\pm5)\times10^{-4}$	$(9\pm5)\times10^{-4}$	$(11\pm4)\times10^{-4}$

1 : Luminosity measurement from low-t elastic scattering

General expression of the elastic cross-section at 0 angle:

$$\frac{dN}{dt}\Big|_{t\approx0} = L\pi \left|f_{C} + f_{N}\right|^{2} \approx L\pi \left|-\frac{2a_{EM}}{\left|t\right|} + \frac{\sigma_{tot}}{4\pi}\left(i+\rho\right)e^{-\frac{b\left|t\right|}{2}}\right|^{2}$$

 $\hfill \hfill \hfill$

Requires :

- Detecting protons at $\theta \sim 3.5 \mu rad$ (UA4 : 120 μrad).
- \Box Special machine parameters : parallel-to-point focusing; L ~ 10^{27}
- Edgeless detector for optimal acceptance
- Precision mechanics controlling movement towards/away from beam
- Backgrounds low and under control

Expected performance ~ 100 hours at 10^{27}

	Input	Lin.fit	Error (%)
L (10 ²⁶ cm ⁻² s ⁻¹)	8.10	8.15	1.8
σ _{tot} (mb)	101	101.1	0.9
B (Gev ⁻²)	18	17.9	0.25
ρ	0.15	0.14	4.3

Systematic uncertainties [%]	Linear fit
Nominal result for L	8.15
Statistical error	1.77
Beam divergence	0.31
Crossing angle	0.18
Optical functions	0.59
Phase advance	1.0
Detector alignment	1.3
Geometrical detector acceptance	0.52
Detector resolution	0.35
Background subtraction	1.10
Total experimental systematic uncertainty	2.20
Total uncertainty	2.82

Maarten Boonekamp, CEA-Saclay

2 : Efficiency

□ Simplest example : Z production. Two isolated leptons – Tag & probe

- Tag Muon: Track in Inner Detector AND Muon Spectrometer (+Isolation and pT-Cuts)
- Probe Muon: Track in Inner Detector (+Isolation and pT-Cuts)

□ If this di-muon mass is near 91 GeV and $\Delta \phi > 2$, then the probe muon is assumed to be a real muon

muon efficiency is given by the fraction of probe

muons with tracks in the Muon Spectrometer

Efficiency results

Electron and muon channels

□ Lepton efficiency : $d\epsilon_1/\epsilon_1 \sim 2\%$ (50 pb⁻¹); 0.5% (1 fb⁻¹)

□ The low backgrounds have ~no effect on the efficiency determination

Cross-section : $d\epsilon_z/\epsilon_z \sim 3\%$ (50 pb⁻¹); 0.8% (1 fb⁻¹)

3 : Acceptance

Total Z cross-section : which fraction of the selected events is within the detector acceptance?

Two factors : Production (Z distributions) Decay (lepton distributions in the Z frame)

□ First factor : $d\sigma/dp_T$, related to proton PDFs and parton showers Not well known

 Second factor : angular distributions and QED/EW radiation in Z rest frame. Well predicted using state of the art tools (MC@NLO+Photos, ResBos, Horace, Winhac/Zinhac...)

- $\hfill\square$ Proton PDF induced uncertainty dA/A $\sim 1\%$
- **QCD** higher orders and resummation contributes $dA/A \sim 3\%$
- Our ATLAS study; also CMS note 2006/082; Mangano, Frixione, 2004 (W production); Adam, Halyo, Yost, 2008 (Z production)

Summary, so far

Z total cross-section:

- □dL/L ~ 10% $\rightarrow < 3\%$ □dε/ε ~ 3% $\rightarrow < 1\%$ □dA/A ~ 3%irreducible at this stage
- Acceptance uncertainties will play a dominant role, especially when measuring cross-section ratios where L cancels
- Many analyses conclude at this point (cf previous slides).
- □ Frustrating but incorrect!

→ Differential cross-sections

Total cross-section measurements are thus limited by the very effects we want to constrain! Differential cross-sections provide more insight acceptance uncertainties small (cf slide 14)

→ Differential cross-sections

Total cross-section measurements are thus limited by the very effects we want to constrain! Differential cross-sections provide more insight acceptance uncertainties small (cf slide 14)

Now return to total cross-section!

Once acceptance uncertainties have been reduced, the total cross-section is a very nice probe of perturbative QCD (hard process cross-section) and PDF normalization

 Z as luminosity monitor : account for overall normalization uncertainty ~5% : this is, at best, a temporary hack

Ratios : cross-normalizing experiment

• Measure $R = \sigma / \sigma_{ref}$:

$$\stackrel{\text{ef}}{:} \frac{dR}{R} = \frac{dN}{N} \oplus \frac{dN_{REF}}{N_{REF}} \oplus 0 \oplus \frac{d(\varepsilon/\varepsilon_{REF})}{(\varepsilon/\varepsilon_{REF})} \oplus \frac{d(A/A_{REF})}{(A/A_{REF})}$$
Statistical terms No lumi term!Additional terms from REF

□ So careful : the interest of this is not always obvious!

- □ Gain : no luminosity dependence
- $\hfill\square$ But additional terms from $\epsilon_{_{REF}}$ and $A_{_{REF}}$

Might be good (if one expects correlated ε ~ ε_{REF} and A ~ A_{REF}) : even more cancelation;
 or bad (if uncorrelated) : larger uncertainty

Conversely : when possible, define R keeping this in mind, i.e maximize correlation with REF

Ratios (2)

Goldson Random example : σ_{tt}

ATLAS CSC

	Likelihood fit		Counting method (elec)	
Source	Electron	Muon	Default	W const.
Statistical	10.5	8.0	2.7	3.5
Lepton ID efficiency	1.0	1.0	1.0	1.0
Lepton trigger efficiency	1.0	1.0	1.0	1.0
50% more W+jets	1.0	0.6	14.7	9.5
20% more W+jets	0.3	0.3	5.9	3.8
Jet Energy Scale (5%)	2.3	0.9	13.3	9.7
PDFs	2.5	2.2	2.3	2.5
ISR/FSR	8.9	8.9	10.6	8.9
Shape of fit function	14.0	10.4	-	-

Likelihood method: $\Delta \sigma / \sigma = (7(\text{stat}) \pm 15(\text{syst}) \pm 3(\text{pdf}) \pm 5(\text{lumi}))\%$ Counting method: $\Delta \sigma / \sigma = (3(\text{stat}) \pm 16(\text{syst}) \pm 3(\text{pdf}) \pm 5(\text{lumi}))\%$

The ratio to Z production, σ_{tt}/σ_z , makes little sense

- □ Cancels out L indeed
- □ All other systematics are essentially independent; also add Z rate uncertainty
- hence a worse result

Ratios (3)

arXiv:0802.0007

Golden example : σ_w / σ_z

- □ Very similar experimentally
 - $\hfill\square$ isolated leptons, same p_{T} range
 - □ Can be selected using same trigger
 - (difference : EtMiss)
- Quark initial state; singlet final state
 → similar QCD corrections
- □ Behave similarly under PDF variations
- □ In σ_w / σ_z , almost everything cancels Hence a beautiful test of QCD

Ratios : cross-normalizing theory

$\ \ \, \Box \ \ \, \sigma_{_{pred}} \ \, can \ then \ be:$

- $\hfill\square$ compared against $\sigma_{\mbox{\tiny meas}}$: e.g search for, or interpretation of new physics
- Used as input for precision measurements

Data-driven predictions (1)

□ Example : W mass. Need to predict W **distributions** (not rates), e.g $d\sigma_w/dy$

Define: $d\sigma_W / dy \rightarrow \frac{d\sigma_W / dy}{d\sigma_Z / dy} \times d\sigma_Z / dy$

Precise prediction Measured

Use RMS of rapidity distribution, $r_y^{W,Z}$, to quantify $d\sigma/dy$ and their variations (choice not unique)

□ Spread of R :

Ratio prediction ~20x more precise than raw

Maarten Boonekamp, CEA-Saclay

do_w/dy

$d\sigma_w/dy$

Careful : precise but incompatible predictions!

Studied sets agree on correlations, not on central values

- different starting assumptions and theoretical frameworks

Data-driven predictions (2)

□ Example : **qq** --> **X** above the **Z**. Motivation:

Also : need precise predictions for the diboson cross-sections (cf next talk)

High-mass Drell-Yan

□ Current LHC uncertainty : \sim 6-7% for 100 GeV < M < 1 TeV and y \sim 0

- \Box \rightarrow Gain a factor ~5. To do this, relate:
 - $\sigma(m,y=0) \sim f^2(\mathbf{x},m)$
 - $\sigma(m_z, y \neq 0) \sim f(X, m_z) \times f(x, m_z)$
 - $\sigma(M,y=0) \sim f^2(X,M)$

(at m [low-mass], **measure**) (at M_z, **measure**) (at M [high-mass], **predict**)

Specifically, write:

$$\sigma(M, y=0) \rightarrow \frac{\sigma(M, y=0) \times \sigma(m, y=0)}{\sigma^2(M_Z, y\neq 0)} \times \frac{\sigma^2(M_Z, y\neq 0)}{\sigma(m, y=0)}$$

Raw prediction

Smaller PDF dependence?

Measured

chosing m, M and y such that $m = M_z e^{-y}$; $M = M_z e^{+y}$

□ Work with Florent chevallier, in preparation

High-mass Drell-Yan

Maarten Boonekamp, CEA-Saclay

High-mass Drell-Yan

- Measured quantities:
 - $\hfill\square$ d_/dy (Z) already shown too much (

 \Box d σ /dm at low mass:

Summary & Conclusions

Cross-section measurements

- □ Complete program : a challenge in every aspect
 - dL/L : luminosity program well underway
 - □ Efficiency, scale, resolution : many auxiliary measurements
 - □ Need to measure distributions to minimize acceptance effects
- □ Ratios : a possible simplification (normalization, or data-driven predictions)
 - Need to be defined carefully : eliminating L can easily introduce other, possibly larger sources of uncertainty
 - A good reference process should be correlated theoretically and experimentally to the target. And SM-certified
- SM cross-sections : not just background control
- PDF uncertainty sets : a great tool
 - Most important application : more than error estimation, investigation of correlations among different physics processes