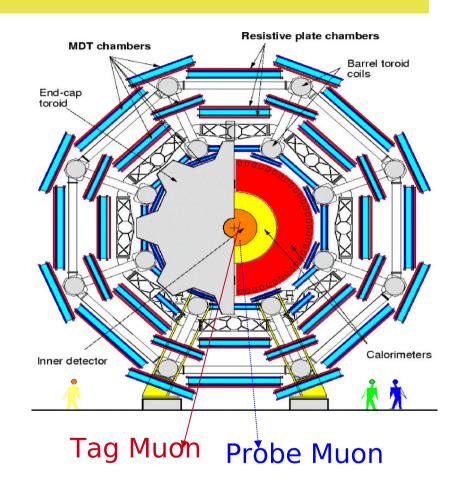
Tag & Probe Method with J/ψ events

Samira Hassani IRFU/SPP (Saclay)

B+ Study (CSC results)

Anastopoulos Christos, Chara Petridou Tessalonique

Introduction


• How to determine the efficiencies with data in order to not rely on the simulation?

- The tracking efficiency for muon of low momentum (pT<20 GeV) can be measured using J/ψ events in principle.
 - This kinematic region is not covered by the Z decays but is important for the B physics
- The « Tag & Probe » method can be used to determine the muon standalone reconstruction efficiencies from data. This method can be used to measure the muon reconstruction efficiencies of the ID or the Trigger.

Introduction: Definition of the method

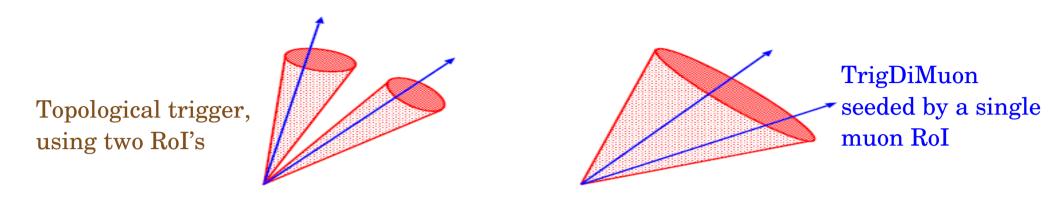
Tag and Probe Method to determine Efficiencies in J/ψ samples

- **Tag Muon**: Track in Inner Detector and Muon Spectrometer (pT-Cuts)
- Probe Muon: Track in Inner Detector (pT-Cuts)
- •If this di-muon mass around J/ψ mass, then the probe muon is assumed to be a real muon:
 - •Muon efficiency is given by the fraction of probe muons with tracks in the Muon Spectrometer

For the J/ψ , the feasibility of this measurement depends on the trigger requirements

Systematics: Trigger

- An important systematic uncertainty comes from the assumption that the tag muon is independent of the measurement of the probe muon
- A correlation between tag and probe muon could be caused by the trigger


• Single muon trigger

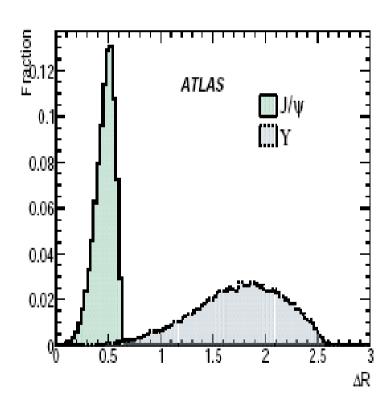
- Where one of the muon forming the J/ψ in the offline reconstruction, is trigged while the other one may be or not be triggeed.
- This trigger provides an unbiased sample to study the MS efficiency
- BUT, huge background contaminates the selected dimuon data sets so much that a reliable efficiency measurement becomes impossible (S/B~1.2)

• <u>Di-muon trigge</u>r

- J/ψ events collected by the topological di-muon trigger introduce correlations and cannot be used for the tag & probe method
 - The topological di-muon trigger starts from a di-muon trigger at level-1 which produces two muon regions of interest.
- Can we then use TrigDiMuon to select events for Tag & Probe?

Tag & Probe on Jpsi sample using TrigDimuon

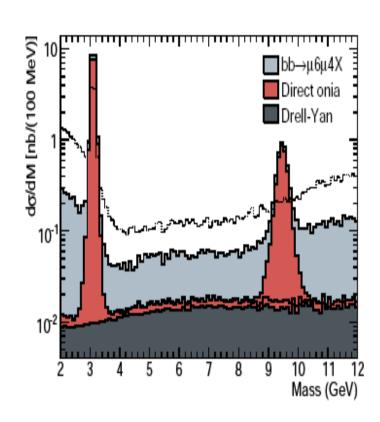
- TrigDiMuon starts with a level-1single muon ROI and search for two muons in a wider eta and phi region. (*developed by Nathalia & Shlomit*)
- This algorithm starts from reconstructing tracks in the ID and extrapolating the track to the MS to tag muons tracks
- Since this method does not explicitly require the second muon at level-1, it has the advantage for reconstructing J/ at low-pT
- Events collected by TrigDimuon could provide a sample which is not completely unbiased
- It is not completely true that TrigDimuon does not introduce correlations between the two reconstructed muons, because they are, as an example, geometrically correlated by the RoI size; this kind of correlation is reduced as the RoI size is increased.

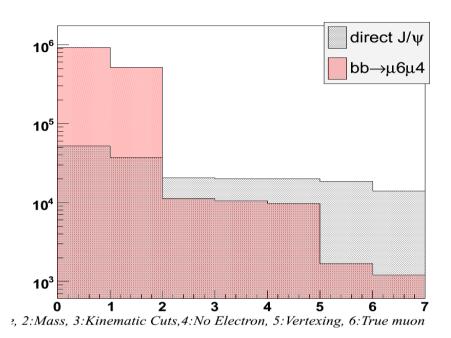

5

Systematics: Isolation

• The muons from J/ψ are on average separated by only DR ~ 0.5

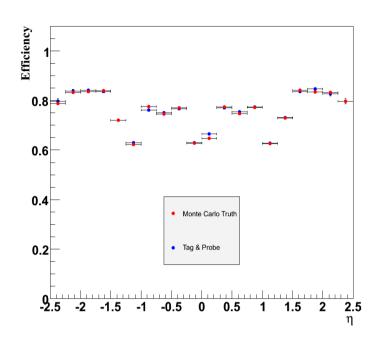
 They are subject to similar material and detector effects, and so these effects are carried over into the J/ψ reconstruction

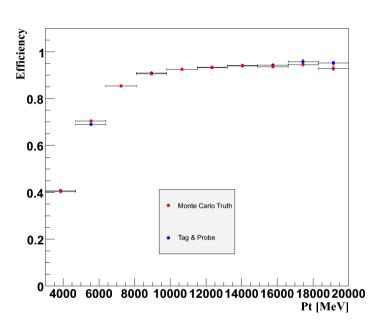

 Difficult to apply isolation criteria or to use calorimeter information Darren, Vato et al « Onia CSC note »

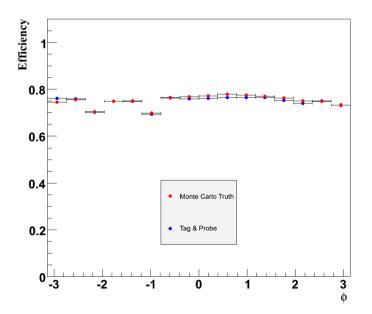

Systematics: Background


- The expected sources of background for prompt J/ with a di-muon trigger are:
 - Indirect J/ψ production from beauty decays;
 - Continuum of muon pairs from beauty decays;
 - Continuum of muon pairs from charm decays;
 - Di-muon production via the Drell-Yan process;
 - Decays in flight of pi and K mesons;
- One can apply the vertexing to suppress the background with the Tag & Probe method
 - The measurement of the ID and the MS are independent
 - The vertexing involves the ID
- The level of the backgrounds considered for Jpsi do not represent any serious problem for reconstruction and analysis of direct Jpsi with the di-muon trigger. (See Onia CSC note)

Darren, Vato et al « Onia CSC note »


Selection cuts




- The tag muon should be the one corresponding to the LVL1 RoI
- Selection cuts:
 - Mass (J/-PDG)<150 MeV
 - Pt(muon) > 4 GeV
 - Check if the track is not associated with an electron (~2% cases)
 - Tracks with secondary vertex are rejected
- Apply the vertexing to suppress the background with the Tag & Probe method
 - The vertexing involves the ID
- The level of the backgrounds is found to of the order of 8% (after cuts sigma(signal)=13.9 nb and 8 sigma(bkg)=1.2 nb)

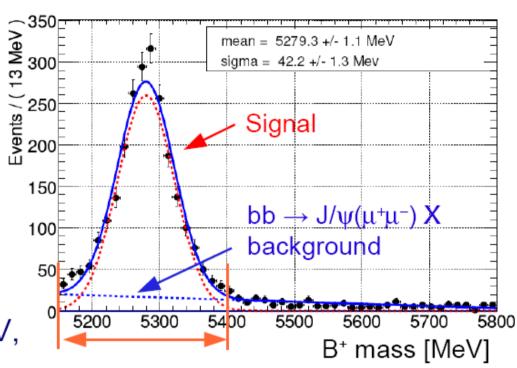
Comparison of the MS efficiency using the Tag & Probe and the MC truth

- A good agreement is found between the muon reconstruction efficiency of the MS using the Tag
 & Probe and via the Monte Carlo truth information
- For 1pb-1, | Efficiency(Insitu) Efficiency(true) ~0.6%

Summary-I

• Investigate the possibility to use TrigDiMuon trigger to select J/ψ events in order to determine the Muon Spectrometer efficiency for muon of low momentum (pT<20 GeV)

• A very good agreement is found between the muon reconstruction efficiency of the MS using the Tag & Probe and via the Monte Carlo truth information


• Release the Tag & Probe code very soon

$B+ \rightarrow J/\psi K+$

- The exclusive B channel provides a clean reference signal due to
 - the clear event topology and its rather large branching ratio
- This channel can be measured during the initial luminosity phase of the LHC.
- The B+ -> J/ψ K+ decay can serve as a reference channel for the measurement of the decay probability of a very rare decay channel Bs-> $\mu+\mu$ -
- The total and differential cross-sections of the rare B decays can then be measured relative to the B+ -> J/ψ K+ cross-section since in a relative measurement, common systematic effects mostly cancel out.
- This channel can also act as a control channel for the CP violation measurement and can be used to estimate the systematic uncertainties and flavour tagging algorithm efficiencies.
- The relatively large statistics for this decay, expected already with the first 10 pb-1 provides a tool for initial detector studies calibration and alignment
- With first Atlas Data the we will measure
 - the B+ Mass, Differential and Total cross section, Lifetime

b Cross Section B+ -> J/ψ K+

- Reference channel
- Di-μ J/ψ trigger,
 ε_{J/ψ} trig ~ 82%
- J/ψ: (p_T(μ_{1,2}) > 6 GeV, 3 GeV)
 displaced vertex λ > 100 μm
 ε_{J/ψ} rec = 55.8%
- B⁺: J/ψ + 1 track (p_T > 1.5 GeV, large impact parameter) displaced vertex λ > 100 μm mass in ±120 GeV around m_B+
- $\varepsilon^{\text{total}} = 29.8 \pm 0.84 \%$ $\sigma(\text{m}_{\text{R}^+}) = 42.2 \pm 1.3 \text{ MeV}$

With 13.2 pb⁻¹:

- ~ 2100 signal events
- cross section to ~3 %
- mass resolution ~ 3 %
- signal lifetime to ~2 %

B+ Lifetime measurement

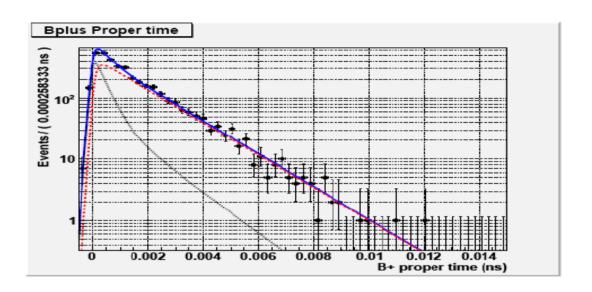


Figure 6: B^+ lifetime fit (STACO).Signal (dashed red), background (dashed black), overall (blue)

Lifetime Fit Results	
Signal lifetime $ au$ ps	1.637±0.036
Bkg1 lifetime τ_1 ps	1.320±0.24
Bkg2 lifetime τ_2 ps	0.370±0.067

Table 11: Lifetime fit results based on a luminosity of $13.2pb^{-1}$

Summary-II

• The exclusive B+ -> J/ψ K+ channel provides a clean reference

• Lifetime measurements provide a sensitive test of detector alignment.

• Accurate lifetime measurements are required for software validation such as the vertexing software.