$t\bar{t}H^0(H^0 ightarrow b\bar{b})$

ARTEMIS 2nd Annual Meeting, Institut Henri Poincare, Paris

Lily Asquith

University College London

July 4, 2008

$t\bar{t}H^0$ at UCL- who we are

Nikos Konstantinidis

Simon Dean

Catrin Bernius Sebastian Boeser Michael Nash

Lily Asquith

Introduction: low mass Higgs search

- Mass range for Higgs is 114 182 GeV (95% C.L.)
- Channels with potential for a low mass Higgs boson:

Backgrounds

Rough number of events for L = 30 fb⁻¹ passing 6 jets + lepton (4 jets b-tagged):

(日) (同) (日) (日)

• \rightarrow Important backgrounds are $t\bar{t}b\bar{b}$ and $t\bar{t}jj$

Artemis Deliverables

1. Determination of the background shape

- Most troublesome backgrounds identified as ttbb and ttjj
- Kinematic cuts on jets may effect the way the background looks
- Must be able to understand these effects.

- 2. Determination of the signal
 - We want an analysis that can spot the Higgs decay
 - Current $\frac{signal}{\sqrt{background}}$ hovering around 1.8...
 - Ideas to improve significance (largely by reducing the **combinatorial** background) include a new χ^2 and use of jet charge

ж

Preselection cuts on b-weight of jets

- The requirement that 4 of our jets be b-tagged may introduce a bias
- Must understand how the choice of b-weight affects the shape of the background

Event selection

- After p_T and b-weight cuts on the jets as part of our preselection, and the reconstruction of the leptonically decaying W:
- We select the best 6 jet combination as being the one which minimises

Effects of χ^2

- The χ² performs better when fed σ(E_T, bweight) and with the W_{ii} and t_{iib} treated separately.
- Still the best χ^2 only selects **both** Higgs jets correctly in 30% of events....

э

The Jet Energy Scale

- Essential that we have an excellent knowledge of the JES
- Can't calibrate to truth level in real data!
- Techniques for calibration include using di-jet events (η) and Z/γ + jets(E)
- This is not enough for this channel:
 - different calibration coefficients for b and non-b jets
 - the event selection we apply can alter the JES
 - $t\bar{t}H^0$ may have a very different underlying event to eg Z + jets

In situ jet calibration using the W_{jj} mass peak

- Use methods similar to top group see: ATL-COM-PHYS-2008-073
- Important differences in preselection: $t\bar{t}H^0/t\bar{t}$ need 6*jets* $\geq 20 GeV/4jets \geq 40 GeV$

- High purity of W_{ij} is essential for jet calibration:- increased p_T cut and exactly 2 light jets
- Full Dress Rehearsal –very low statistics

Ongoing work: Jet Charge

•
$$Q_k = \sum_i q_i |p_i \cdot \hat{n}|^k$$

• k = 0.5, Track $p_T \ge 1.0 GeV$, $d_0 \le 0.1$ w.r.t jet primary vertex

- 4 b-jets in the event must be correctly assigned to H⁰, t and t
- Currently the best χ^2 method gives us the correct jets for the higgs in just 30% of events
- 50% of events have one of the b-jets from H^0 assigned to t or \overline{t}
- Use jets' tracks to calculate charge of $b\bar{b}$ pair and include in χ^2

(日) (同) (日) (日)

Summary

- Plenty more work to be done on understanding the background shape, how it changes with kinematic cuts.
- New ideas to explore for helping to determine the signal: every little bit counts.
- First data will be very useful for in-situ jet calibration
- Exciting times!

