2nd ARTEMIS annual meeting July 4th, 2008

H to 4 leptons

<u>Outline:</u>

- Introduction
- The work so far
- Possible improvements after the CSC note
- Ready for real data?

<u>P. Fleischmann</u>, B. Lenzi, R. Nikolaidou C. Anastopoulos, T. Doszelmann, N. Kerschen, S. Paganis, K. Prokofiev

Higgs Production and Decay at the LHC

- Dominant process: gluon-gluon fusion ~10-20% uncert.
- LEP Direct Limit: M₁ > 114.4 GeV@ 95% CL

Higgs To Four Leptons

- The "golden channel"
 - Clean signal on top of smooth background
 - Narrow mass peak due to full event reconstruction
 - Only electrons and muons involved
 - Multiple sub-channels: 4e, 4 μ , 2e2 μ
 - Simple trigger set-up: high P_{τ} single and di-lepton triggers
 - First objects to be understood in ATLAS
 - High branching ratio in a wide mass range
- Challenges
 - Low statistics ($Z \rightarrow \mu \mu$ and $Z \rightarrow ee$ BR $\approx 3.37\%$)
 - Good lepton identification required
 - Only one on-shell Z at low Higgs masses
 - Low $\mathsf{P}_{_{\mathsf{T}}}$ leptons required

Background Processes

Irreducible	$\sigma_{_{NLO}}$ ·BR [fb]
- qq→ZZ*/γ*→4I	2x10 ²
 NLO derived from LO PYTHIA + K-factor from MCFM 	
$- gg \rightarrow ZZ^*/\gamma^* \rightarrow 4$	6x10 ¹
• Added as 30% correction to $qq \rightarrow ZZ^*$ LO x-section	
Reducible	
– gg→Zbb→2lbb	7,104
 NLO derived from LO AcerMC + K-factor from MCFM 	/ X T U
– qq→Zbb→2lbb	1 104
• Added as 8.6pb correction to $gg \rightarrow Zbb \ LO \ x$ -section	1x10 ⁺
– gg,qq→tt	
 NLO MC@NLO + Jimmy 	8x10 ⁵
 Additional possible sources of background 	
- qq→WZ	
– gg→Z+X	

The Analysis Framework

- ATLAS Software releases 13 and 14
 - Athena / AthenaROOTAccess
 - Use / validation of standard tools
 - AOD or DPD with in future maybe included user data
- Monte Carlo samples available on the Grid
 - Signal samples
 - Ideal geometry / misaligned / pile-up
 - Different mass points: 120 GeV up to 600 GeV
 - In this presentation: Higgs mass 130 GeV
 - Background samples
 - Misaligned
 - Sample sizes: 70k up to 500k events per channel

The Analysis Strategy

see talk by

Tulay

- Signal selection
 - Aim: trigger on signal
 - Cuts on $\mathsf{P}_{_{\!\!\mathrm{T}}}$ distribution of leptons
 - Cuts on di-lepton mass m₁
- Background Rejection

- Aim: reject the reducible background well below the irreducible background (protection against theoretical uncertainties)
 - Isolation cuts
 - Impact parameter of leptons, χ^2 of common vertex of 4l
- Higgs mass reconstruction
 - Aim: improve mass resolution
 - Combined reconstruction (calo + ID, Muon Spectrometer + ID)
 - Z mass constraint (Breit-Wigner + Gaussian distribution)

Lepton Identification

Good Lepton Identification essential

- Electrons

- Cluster in LAr EM-Calorimeter
- Inner Detector track associated with the cluster
- Consistency of shower shape of the cluster with an electron
- Inconsistency of shower shape of the cluster with $\pi^0 \rightarrow \gamma \gamma$
- Hits in the Pixel and SCT detector required

- Muons

- STACO: Combined reconstruction of tracks in ID and Muon Spectrometer
- MuTag: Tagging ID tracks with track segments in the Muon Spectrometer

4th July 2008

7

see talk by Nicolas

see talk by

Rosv

Background Rejection

- Track isolation
 - Zbb and tt background shows activity around leptons from heavy quark decays
 - Cut on $\Sigma P_{T}/P_{T}^{\mu}$ in cone ΔR (Inner Detector)
 - Cut on $\Sigma E_{T}/P_{T}^{\mu}$ in cone ΔR (Calorimeter)

- Impact parameter (transverse distance of closest approach)
 - Leptons from b- and c-decays come from secondary vertices
 - Cut on significance: $d_0/\sigma(d_0)$

Higgs Mass Reconstruction

- Higgs mass reconstruction
 - Measurment of Higgs mass needs good lepton energy resolution
 - Calibration of lepton energy using Z—II
 - Electron energy corrected by 1% to account for material effects
- Higgs width varies rapidly over mass range
 - Above ~200 GeV natural width exceeds detector resolution
 - For low masses good resolution is crucial for discovery
 - Use on-shell Z mass constrain fit

Higgs To Four Leptons CSC Note

Selection cut	Signal (m _H =130 GeV)		
	4e	4μ	2e2µ
Trigger selection	94.7	95.3	95.7
Lepton preselection	57.0	73.8	66.8
Lepton quality and P_{T}	24.7	60.5	39.7
Z's mass cut	17.1	42.9	27.6
Calo Isolation	17.1	39.5	25.4
Tracker Isolation	16.5	38.1	24.7
IP cut	15.1	36.5	23.2
H mass cut	12.5±0.3	31.4±0.5	19.2±0.4

Significance Extraction

- Different ways how to extract the signal significance
 - Using Poisson statistics
 - Good description by Monte Carlo needed
 - Use sidebands to determine the background
 - Good description by fit function needed

Significance Extraction From A Sideband Fit

- Background normalization error depends on statistics in the sideband and knowledge of the shape Significance Method
 - When using the full sideband fit
 - + More statistics
 - Larger uncertainty due to complex shape
 - Only use near sideband for the fit
 - + Much simpler shape
 - Less statistics

No look-elsewhere effect yet!

(m, =130 GeV and [L=30 fb-1)

7.1

5.98

4.62

4.69

4.6±0.2

Poisson Statistics (no sys.)

Profile Likelihood

(full sideband) Profile Likelihood

(near sideband) Approx. frequentist

Numerical frequentist

Beyond CSC note

- CSC analysis is done, so are we done yet?
- There is room for improvements e.g.
 - Electron Identification
 - Impact parameter determination
 - Track χ²

. . .

- Track Isolation

Studies On Z→ee Inclusive Sample

- Problem with standard medium identification cuts on electrons
 - Z inclusive background ~20 times higher than Zbb and ~2 times higher than ZZ
- Test of IsEM cuts on signal electrons and fake electrons
 - Signal electrons: electrons from Z, Z* in a Higgs sample
 - Fake electrons: hadrons passing cuts in the $Z \rightarrow ee$ inclusive sample

14

Estimate Of Required Fake Rejection

- We need to make sure, that we control the background
 - Aim: Z→ee below 10% of ZZ*→4e
 - $Z \rightarrow ee cross section: 1.4 nb$
 - ZZ* \rightarrow 4e cross section 8.5 fb with sel.efficiency ~30%
 - → 8.5 fb x 30% x 10% = 1.4 nb x sel.efficiency x (rejection)⁻¹
 - Required rejection before selection: ~ 5x10⁶
 - Achieved rejection with medium cuts: ~2x10⁵
- Composition of the remaining background after medium cuts:
 - ~60% 2 e from Z + 2 fakes
 - ~30%
 2 e from Z + 1 fake + 1 e from photon conversion
 - ~10%
 2 e from Z + 2 e from photon conversion
- Jet rejection for various IsEM settings is (for pT > 8 GeV):
 - Loose: ~180 (with electron efficiency of 86.9 %)
 - Medium: ~500 (with electron efficiency of 76.0 %)
 - Medium + Calolso: ~900 (with electron efficiency of 75.8 %)
 - ~45000 (with electron efficiency of 67 %)

– Tight:

IsEM Optimisation

- Desired jet rejection: ~3200
 - Medium cut too low / tight cut too drastic
- Optimisation of electron cuts for the $H\rightarrow 4I$ analysis
 - − Analysing Z→ee inclusive sample
 - Cut values derived using TMVA (multivariate analysis)
- Two sets of cuts:
 - Set optimised for high efficiency
 - jet rejection: 3801 \rightarrow factor 8 improvement to 'medium'
 - Electron efficiency: 79.3% \rightarrow 5% increase to 'medium'
 - Set optimised for high rejection
 - jet rejection: 8247
 - Electron efficiency: 74.5%
- Remark:
 - Currently this is all back-on-the-envelope estimation
 - Study ongoing with $Z \rightarrow ee$ inclusive sample with 5M events

Impact Parameter Studies

d₀ calculated with respect to...

- 1) ...nominal interaction point
 - $\sigma(d_0)$ uses only error on reconstructed track
- 2) ...simulated primary vertex
 - $-\sigma(d_0)$ uses only error on reconstructed track
- 3) ...reconstructed primary vertex using all tracks
 - $-\sigma(d_0)$ uses only error on reconstructed track
- 4) ...reconstructed primary vertex using all tracks (used in CSC note)
 - $\sigma(d_0)$ uses error on reconstructed track and error on primary vertex
- 5) ...reconstructed primary vertex using all tracks but current one
 - σ(d₀) uses error on reconstructed track and error on primary vertex

4th July 2008

Impact Parameter for Electrons

d₀ calculated with respect to...

- 4) ...reconstructed primary vertex using all tracks (used in CSC note)
 - $\sigma(d_{\scriptscriptstyle 0})$ uses error on reconstructed track and error on primary vertex
- 5) ...reconstructed primary vertex using all tracks but current one
 - $\sigma(d_0)$ uses error on reconstructed track and error on primary vertex

Solid line: signal

Dashed lines: ttbar and Zbbar backgrounds

Histograms are normalized to the individual total numbers of events and then superimposed.

Including the current track in the d_0 calculation can lead to a biased d_0 significance result $d_0/\sigma(d_0)$

4th July 2008

First Data

- Verify that the detector works
 - analyse properties as close to the hardware as possible
- Verify lepton identification
 - use well known processes like Z→II
 - at $10pb^{-1}$ with $\sqrt{s}=14TeV$ about 5k Z \rightarrow II expected (after cuts)
- Prove that we understand the detector
 - verify Standard Model properties
- Prove that we have the background under control
 - Estimate the background from data
- Significances depend on m_H and knowledge of background
 - for 1fb⁻¹ : between 0.5 and 2.5
 - for 5fb⁻¹ : between 1.0 and 5.9

Outlook

- A first step has been done with the CSC note
 - We have seen, that it is feasible
- We have seen, that there is room for improvements
 - Improved electron identification cuts
 - Improved impact parameter treatment
 - Other studies ongoing
- Now we need to prepare ourselves for real data
 - The next months will be an exciting time